Abstract:
Embodiments of user equipment (UE) and methods for enhanced discontinuous reception (DRX) operations for inter eNB carrier aggregation (CA) in an LTE network are generally described herein. In some embodiments, a UE is configured to be served by multiple serving cells. The first set of the serving cells may be associated with a first eNB and a second set of serving cells may be associated with a second eNB. In these embodiments, DRX operations may be performed independently in multiple serving cells belonging to the different eNBs. Other embodiments for enhanced DRX operations are also described.
Abstract:
The techniques introduced herein provide a framework for efficient communication to, and among, a local communication group (LCG). The LCG may be a peer-to-group communication or a network-to-group communication. The peer-to-group communication may be one way (e.g., one peer in the group may send communications to the rest of the users with little feedback) or two way (e.g., each member of the group may have the ability to share content with the remaining members of the group). According to the techniques introduced herein, local group communication may be anchored through an eNodeB of an LTE network, which may use a combination of multicast communications in the downlink and unicast communications in the uplink.
Abstract:
Methods, systems, and storage media are described for the prioritization of services for control and data transmission for new radio (NR) systems. In particular, some embodiments may be directed to the prioritization of hybrid automatic repeat request-acknowledgment (HARQ-ACK) transmissions. Other embodiments may be described and/or claimed.
Abstract:
A computer-readable storage medium that stores instructions for execution by one or more processors of a UE. The instructions to configure the UE for a streamlined transmission during low latency communications in a wireless network and to cause the UE to decode configuration signaling from a base station. The configuration signaling configures SR occasions for the UE. The UE detects availability of a UL data packet from an application layer, a size of the UL data packet being higher than a size of a TTI associated with a pre-defined slot boundary. An SR is encoded for transmission during one of the SR occasions, the SR including an indication based on the size. Control information is decoded in response to the SR, the control information including a scheduling grant based on the size of the UL data packet. The UL data packet is encoded for transmission using the scheduling grant.
Abstract:
Embodiments of a User Equipment (UE), Evolved Node-B (eNB) and methods for communication in accordance with a packet convergence and link control (PCLC) layer are generally described herein. The UE may receive, from a Fifth Generation (5G) eNB, a first group of medium access control (MAC) protocol data units (PDUs) that include PCLC PDUs. In accordance with PCLC sequence numbers (SNs), the UE may reorder the PCLC PDUs and may decipher the PCLC PDUs. The UE may receive, from a legacy eNB, a second group of MAC PDUs that include packet data convergence protocol (PDCP) PDUs encapsulated in radio link control (RLC) PDUs. The UE may reorder the RLC PDUs based on RLC SNs and may decipher the RLC PDUs based on PDCP SNs that are exclusive to the RLC SNs.
Abstract:
A User Equipment (UE) and a Radio Access Network (RAN) node may be configured to use multiple Scheduling Request (SR) configurations. A SR configuration may indicate to radio resources to be used to communicate a SR to the RAN node. The RAN node may provide UE with information associating logical channels to SR configurations. When the UE has data to transmit to the RAN node, the UE may determine the logical channel corresponding to the data, determine the SR configuration corresponding to the logical channel, and communicate a SR to the RAN node in accordance with the SR configuration. Upon receiving the SR, the RAN node determine the SR configuration used to transmit the SR and in turn determine the logical channel for which the SR was transmitted. The RAN node may then transmit an Uplink (UL) grant for the logical channel to the UE.
Abstract:
A secondary node (SN) in evolved universal mobile telecommunications system terrestrial radio access network new radio-dual connectivity (EN-DC) with a master node (MN) can directly provide measurement configuration and receive measurement reports from a UE and/or coordinate measurement configuration and reporting with the MN. For example, only one measurement object configuration is allowed for a frequency, but both MN and SN can provide measurement reporting configurations on the same measurement object. The UE can send measurement reports for the same measurement object to both MN and SN or the node that configured the reporting criteria configuration. In another embodiment, only one node provides the reporting configuration but configures the UE to provide reporting to one node or both MN and SN.
Abstract:
Briefly, in accordance with one or more embodiments, user equipment receives unicast services from a first carrier of a primary serving cell and determines if Multimedia Broadcast and Multicast services (MBMS) services are available on a second carrier based at least in part on information in a broadcast carrier channel that indicates the second carrier or an identification (ID) of the second carrier. If MBMS services are available on the second carrier, the user equipment at least temporarily switches to the second carrier to receive the MBMS services. The user equipment may provide feedback to the network or the primary serving cell when it starts and stops receiving MBMS services, and then may switch back to the primary serving cell when MBMS services have ended or the user equipment no longer desires to receive MBMS services.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for management and/or support of multimedia broadcast multicast service (MBMS) service in a wireless communications network. An evolved Node B (eNB) may transmit MBMS assistance information to a user equipment (UE). The MBMS assistance information may identify a carrier by which one or more upcoming MBMS services are to be provided and an indicator of a carrier selection mode to be used by the UE. The UE may transmit an MBMS interest indication message including information related to one or more targeted MBMS services which the UE wants to receive.
Abstract:
Briefly, in accordance with one or more embodiments, user equipment receives unicast services from a first carrier of a primary serving cell and determines if Multimedia Broadcast and Multicast services (MBMS) services are available on a second carrier based at least in part on information in a broadcast carrier channel that indicates the second carrier or an identification (ID) of the second carrier. If MBMS services are available on the second carrier, the user equipment at least temporarily switches to the second carrier to receive the MBMS services. The user equipment may provide feedback to the network or the primary serving cell when it starts and stops receiving MBMS services, and then may switch back to the primary serving cell when MBMS services have ended or the user equipment no longer desires to receive MBMS services.