Abstract:
A microelectronic package can include a substrate having a first surface and a plurality of substrate contacts at the first surface and a microelectronic element having a front surface and contacts arranged within a contact-bearing region of the front surface. The contacts of the microelectronic element can face the substrate contacts and can be joined thereto. An underfill can be disposed between the substrate first surface and the contact-bearing region of the front surface of the microelectronic element. The underfill can reinforce the joints between the contacts and the substrate contacts. A joining material can bond the substrate first surface with the front surface of the microelectronic element. The joining material can have a Young's modulus less than 75% of a Young's modulus of the underfill.
Abstract:
A microelectronic element is disclosed that includes a semiconductor chip and a continuous monolithic metallic edge-reinforcement ring that covers each of the plurality of edge surfaces of the semiconductor chip and extending onto the front surface. The semiconductor chip may have front and rear opposed surfaces and a plurality of contacts at the front surface and edge surfaces extending between the front and rear surfaces. The semiconductor chip may also embody at least an active device or a passive device.
Abstract:
A microelectronic unit includes a semiconductor element consisting essentially of semiconductor material and having a front surface, a rear surface, a plurality of active semiconductor devices adjacent the front surface, a plurality of conductive pads exposed at the front surface, and an opening extending through the semiconductor element. At least one of the conductive pads can at least partially overlie the opening and can be electrically connected with at least one of the active semiconductor devices. The microelectronic unit can also include a first conductive element exposed at the rear surface for connection with an external component, the first conductive element extending through the opening and electrically connected with the at least one conductive pad, and a second conductive element extending through the opening and insulated from the first conductive element. The at least one conductive pad can overlie a peripheral edge of the second conductive element.
Abstract:
A method of bonding a first substrate and a second substrate includes the steps of rotating first substrate with an adhesive mass thereon, and second substrate contacting the mass and overlying the first substrate, controlling a vertical height of a heated control platen spaced apart from and not contacting the second substrate so as to control a temperature of the adhesive mass, so as to at least one of bond the first and second substrates in alignment with one another, or achieve a sufficiently planar adhesive interface between the first and second substrates.
Abstract:
A microelectronic assembly includes first and second stacked microelectronic elements, each having spaced apart traces extending along a front face and beyond at least a first edge thereof. An insulating region can contact the edges of each microelectronic element and at least portions of the traces of each microelectronic element extending beyond the respective first edges. The insulating region can define first and second side surfaces adjacent the first and second edges of the microelectronic elements. A plurality of spaced apart openings can extend along a side surface of the microelectronic assembly. Electrical conductors connected with respective traces can have portions disposed in respective openings and extending along the respective openings. The electrical conductors may extend to pads or solder balls overlying a face of one of the microelectronic elements.
Abstract:
An interconnection component includes an element with an opening, a plurality of conductors electrically insulted from one another extending through the opening, and a plurality of second contacts electrically insulated from one another. The element is comprised of a material having a coefficient of thermal expansion of less than 10 parts per million per degree Celsius. At least some of the conductors extend along at least one inner surface of the opening. The conductors define a plurality of wettable first contacts at the first surface. The first contacts are at least partially aligned with the opening in a direction of the thickness and electrically insulated from one another.
Abstract:
A microelectronic unit can include a carrier structure having a front surface, a rear surface remote from the front surface, and a recess having an opening at the front surface and an inner surface located below the front surface of the carrier structure. The microelectronic unit can also include a microelectronic element having a top surface adjacent the inner surface, a bottom surface remote from the top surface, and a plurality of contacts at the top surface. The microelectronic unit can also include terminals electrically connected with the contacts of the microelectronic element. The terminals can be electrically insulated from the carrier structure. The microelectronic unit can also include a dielectric region contacting at least the bottom surface of the microelectronic element. The dielectric region can define a planar surface located coplanar with or above the front surface of the carrier structure.
Abstract:
Methods and apparatus for forming a semiconductor device are provided which may include any number of features. One feature is a method of forming an interconnect structure that results in the interconnect structure having a co-planar or flat top surface. Another feature is a method of forming an interconnect structure that results in the interconnect structure having a surface that is angled upwards greater than zero with respect to a top surface of the substrate. The interconnect structure can comprise a damascene structure, such as a single or dual damascene structure, or alternatively, can comprise a silicon-through via (TSV) structure.
Abstract:
A microelectronic assembly may include a substrate containing a dielectric element having first and second opposed surfaces. The dielectric element may include a first dielectric layer adjacent the first surface, and a second dielectric layer disposed between the first dielectric layer and the second surface. A Young's modulus of the first dielectric layer may be at least 50% greater than the Young's modulus of the second dielectric layer, which is less than two gigapascal (GPa). A conductive structure may extend through the first and second dielectric layers and electrically connect substrate contacts at the first surface with terminals at the second surface. The substrate contacts may be joined with contacts of a microelectronic element through conductive masses, and a rigid underfill may be between the microelectronic element and the first surface. The terminals may be usable to bond the microelectronic assembly to contacts of a component external to the microelectronic assembly.
Abstract:
A microelectronic assembly can include first, second and third stacked substantially planar elements, e.g., of dielectric or semiconductor material, and which may have a CTE of less than 10 ppm/° C. The assembly may be a microelectronic package and may incorporate active semiconductor devices in one, two or more of the first, second or third elements to function cooperatively as a system-in-a-package. In one example, an electrically conductive element having a minimum thickness less than 10 microns, may be formed by plating, and may electrically connect two or more of the first, second or third elements. The conductive element may entirely underlie a surface of another one of the substantially planar elements.