Abstract:
A system and method are presented for neural network based feature extraction for acoustic model development. A neural network may be used to extract acoustic features from raw MFCCs or the spectrum, which are then used for training acoustic models for speech recognition systems. Feature extraction may be performed by optimizing a cost function used in linear discriminant analysis. General non-linear functions generated by the neural network are used for feature extraction. The transformation may be performed using a cost function from linear discriminant analysis methods which perform linear operations on the MFCCs and generate lower dimensional features for speech recognition. The extracted acoustic features may then be used for training acoustic models for speech recognition systems.
Abstract:
A system and method for learning alternate pronunciations for speech recognition is disclosed. Alternative name pronunciations may be covered, through pronunciation learning, that have not been previously covered in a general pronunciation dictionary. In an embodiment, the detection of phone-level and syllable-level mispronunciations in words and sentences may be based on acoustic models trained by Hidden Markov Models. Mispronunciations may be detected by comparing the likelihood of the potential state of the targeting pronunciation unit with a pre-determined threshold through a series of tests. It is also within the scope of an embodiment to detect accents.
Abstract:
A system and method are presented for the correction of packet loss in audio in automatic speech recognition (ASR) systems. Packet loss correction, as presented herein, occurs at the recognition stage without modifying any of the acoustic models generated during training. The behavior of the ASR engine in the absence of packet loss is thus not altered. To accomplish this, the actual input signal may be rectified, the recognition scores may be normalized to account for signal errors, and a best-estimate method using information from previous frames and acoustic models may be used to replace the noisy signal.
Abstract:
A system and method are presented for neural network based feature extraction for acoustic model development. A neural network may be used to extract acoustic features from raw MFCCs or the spectrum, which are then used for training acoustic models for speech recognition systems. Feature extraction may be performed by optimizing a cost function used in linear discriminant analysis. General non-linear functions generated by the neural network are used for feature extraction. The transformation may be performed using a cost function from linear discriminant analysis methods which perform linear operations on the MFCCs and generate lower dimensional features for speech recognition. The extracted acoustic features may then be used for training acoustic models for speech recognition systems.