Abstract:
A handheld condenser microphone is provided with a condenser microphone unit having two unidirectional condenser elements. A conductive fabric 221 is put between a lock ring 213 and the second condenser element 10b, when an acoustic-electric transducer 220 is fixed inside a unit case 210 by fastening force of the lock ring 213.
Abstract:
A back air room of a microphone unit can be enlarged and a model with a sound signal output switch can easily be diverted to a switchless model. A reed switch 16 is used as the sound signal output switch which turns on or off the sound signal from a microphone unit 1. This reed switch is disposed at an output connector 11 portion at an rear end of a microphone case 6. It is arranged that a magnet 22 is disposed at a connector cover 21 which surrounds an output connector and relative movement of the connector cover with respect to the output connector allows on/off operation. Thus, by removing the connector cover 21, it is possible to provide the microphone as a switchless model which always outputs the sound signal from the microphone unit 1.
Abstract:
A narrow directional microphone includes a unit case having a front end portion to which a microphone unit is mounted, and a side surface functioning as a grip, an acoustic tube formed of resin material in a tubular shape, covering the microphone unit, and attached to the front end portion of the unit case such that the microphone unit is positioned to an inner bottom portion of the acoustic tube, a piezoelectric film that is arranged in at least one part of the acoustic tube, and that generates a detection output based on a mechanical deformation of the acoustic tube, and an output signal processing unit including an attenuation circuit that attenuates an audio signal from the microphone unit with the detection output from the piezoelectric film and sends the attenuated audio signal to a signal output unit.
Abstract:
Provided is an impedance conversion circuit of a condenser microphone which includes a first electron tube operated in grounded-cathode mode to whose grid an output signal from a condenser microphone unit is inputted, and from whose plate a signal is outputted, a first emitter-follower circuit configured to receive a signal based on a plate output of the first electron tube and amplify a current, and a first feedback element configured to transmit a feedback signal from an emitter of a transistor configuring the first emitter-follower circuit to the grid of the first electron tube. And the impedance conversion circuit can achieve a wide dynamic range while using a voltage amplifier circuit with an electron tube at an initial stage
Abstract:
A condenser microphone utilizes a PLL circuit which includes a phase shift oscillator having an RC network that uses an electrostatic capacitance of the condenser microphone unit varying upon reception of a sound pressure and a resistance value of a variable resistance element; a phase detection unit that compares phases of a fixed frequency signal from a reference signal oscillator and an oscillation output signal from the phase shift oscillator and outputs a phase difference signal corresponding to a phase difference; a loop filter that extracts a control signal when receiving the phase difference signal from the phase detection unit; and a driver circuit that changes a resistance value of the variable resistance element provided in the phase shift oscillator based on the control signal obtained from the loop filter. The control signal obtained from the loop filter of the PLL circuit is used as an audio output signal.
Abstract:
An acoustic tube attaching unit that attaches an acoustic tube to a side of a main body case where a microphone unit is mounted. The acoustic tube attaching unit includes first and second elastic members lying between a fixing member and a washer, and bolts that tight the fixing member and the washer in an axial direction. A peripheral edge surface of the first elastic member is formed in a linear manner, and a peripheral edge surface of the second elastic member is formed in a recessed surface manner, so that the peripheral edge surface of the first elastic member protrudes in an outer peripheral direction by elastic deformation by the tightening of the bolts. The acoustic tube is attached to the main body case side by fixing action to an inner wall of the acoustic tube by the protrusion of the first elastic member in the outer peripheral direction.
Abstract:
Provided is a variable directivity electret condenser microphone that can simplify a circuit configuration, and outputs an audio signal in a balanced manner, which includes electrically independent first and second electret condenser microphone units in which first and second fixed electrodes are arranged back to back and facing each other in a mutually non-conductive state, and first and second diaphragms are arranged facing the first and second fixed electrodes with fixed intervals therefrom respectively, a first impedance converter having an input terminal connected to the first fixed electrode, and a first buffer circuit connected to the first impedance converter, a second impedance converter having an input terminal connected to the second fixed electrode, and a second buffer circuit selectively connected to the second impedance converter, and a directivity variable switch that can alternatively select a mode from at least a first directivity mode to a third directivity mode.
Abstract:
A microphone unit includes a first connection terminal abutting on a terminal on a microphone body side, a second connection terminal connected on a fixed electrode side, and a coil spring provided between the first connection terminal and the second connection terminal, compressed upon coupling of the microphone unit and the microphone body, and urging the first connection terminal toward the microphone body. When the microphone unit and the microphone body are coupled, the first connection terminal and the second connection terminal are connected, and the first connection terminal is connected to the terminal on the microphone body side. When the microphone unit and the microphone body are separated from each other, the first connection terminal and the second connection terminal are separated from each other by an urging force of the coil spring.
Abstract:
In an electrodynamic acoustic transducer which uses a surface potential of an electret dielectric film as a polarization voltage, prevention of partial suctional adhesion of a diaphragm caused by variation in surface potential across the electret dielectric film is ensured in a simple way. In an electrodynamic acoustic transducer including a diaphragm and a fixed pole which are arranged with a predetermined interval so as to face each other, a facing surface of either one of the diaphragm and the fixed pole having an electret dielectric film, a surface of the electret dielectric film is divided into a plurality of segment regions, and a predetermined surface potential is given to each of the segment regions by a polarization processing unit.
Abstract:
The present invention provides a unidirectional microphone by adding an output from an omnidirectional condenser microphone unit and an output from a bi-directional ribbon microphone unit together. A condenser microphone unit 10 and a ribbon microphone unit 20 are connected in series via a step-up transformer 30, and the respective sound signals from the microphone units 10 and 20 are added together and are output from a source S of an FET 14.