Abstract:
There are provided a microphone stand having a connector supporting groove, and a microphone body supported by the microphone stand as a result of insertion of a connector case into the connector supporting groove. A resilient conductive cloth which comes into contact with the connector case is arranged in the connector supporting groove, with the connector case inserted in the connector supporting groove. The conductive cloth is preferably arranged in a ring shape along a lower bottom portion of the annularly formed connector supporting groove. This configuration mitigates rattling generated between the connector supporting groove and the connector case, thereby suppressing generation of a vibration noise due to microphone shaking.
Abstract:
In an electrodynamic electroacoustic transducer, a diaphragm assembly including a diaphragm and a voice coil is attached to a unit housing accurately and easily. A peripheral portion of the diaphragm curves upward while forming a downward convex portion toward an end portion side thereof. In an opening edge portion of the unit housing, a support base portion contacting the downward convex portion of the diaphragm is formed and a concave portion which a peripheral end portion of the diaphragm engages with is formed in an inside surface. In the diaphragm, the downward convex portion is supported by the support base portion of the unit housing in the peripheral portion thereof, so that the peripheral end portion engages with the concave portion of the unit housing in a state in which the peripheral end portion has upward elastic force.
Abstract:
Provided is a variable directivity electret condenser microphone that can simplify a circuit configuration, and outputs an audio signal in an unbalanced manner. Included are electrically independent first and second electret condenser microphone units in which first and second fixed electrodes are arranged back to back and facing each other in a mutually non-conductive state, and first and second diaphragms are arranged facing the first and second fixed electrodes with fixed intervals from the first and second fixed electrodes, respectively, a first impedance converter having an input terminal connected to the first fixed electrode, a DC cut capacitor selectively connected between an output terminal of the first impedance converter and an input terminal of the second impedance converter, and a directivity variable switche that can alternatively select a mode from at least a first directivity mode to a third directivity mode.
Abstract:
An acoustic impedance on a rear acoustic terminal side is set such that satisfactory directionality is obtained even in a high tone range. A rear portion of a sealing member 30A fitted to a unit case 10 is formed in a convex spherical shape, ranging from an apex part 301 to a hem part 302. The sealing member 30A forms an acoustic distributed constant circuit including: a first portion 310 in which a cross-sectional area of a sound path continuously increases, the sound path running from acoustic resistance parts AR as sound holes 28a of an electroacoustic transducer 20 to reach a rear acoustic terminal 12 through an air chamber A; and a second portion 320 on the rear acoustic terminal 12 side in which a cross-sectional area continuously decreases toward a direction farther from a sound pickup source.
Abstract:
When a diaphragm formed in the shape of an oval is held by a holding member, an electrostatic electroacoustic transducer which allows stable tension without a diaphragm flexing is provided. In the electrostatic electroacoustic transducer, a diaphragm 11 and a diaphragm holding member 12 are formed in the shape of an oval, and is provided with a corrector member 21 which presses inwardly from outside both side ends on a major axis of the oval diaphragm holding member, and opens and deforms outwardly a pair of opposed long sides 12a and 12b on a minor axis side of the diaphragm holding member.
Abstract:
To provide an insulator, which supports a fixed pole in a unidirectional condenser microphone in a shareable manner among microphones that are different in the distance between acoustic terminals from one another. Coarse adjustment is performed on an insulator 31 including a plurality of sound holes 32 drilled therein by acoustically closing a predetermined sound hole 32 among the plurality of sound holes 32 by a predetermined sound hole closing means, and fine adjustment is performed by applying a predetermined amount of compressive force to an acoustic resistance member 40 by an acoustic resistance adjusting means 50 (adjustment nut 51), so as to adjust acoustic resistance present in a sound wave passage from a rear acoustic terminal to the back of a diaphragm.
Abstract:
To prevent penetration of water into a microphone unit side even if the rain falls on a cylindrical acoustic tube in a narrow directional microphone using the acoustic tube. The narrow directional microphone includes a cylindrical acoustic tube base portion, the acoustic tube base portion includes at least one slit-like opening extending along a longitudinal direction of the acoustic tube base portion, a plurality of short fibers are implanted in an outer peripheral surface of the acoustic tube base portion and base portion edge surfaces that form the opening, and the opening is covered with the short fibers.
Abstract:
A condenser microphone unit that has a capacitor element with a large effective area and a high signal-noise ratio but does not have frequency-dependence occurring with sound waves beyond the audio frequency range. A solid cylindrical fixed electrode pole is used as a fixed electrode. A diaphragm includes a rectangular synthetic resin film having a length smaller than or equal to the axis length of the fixed electrode pole, and a width equal to a circumferential length of the fixed electrode pole, the synthetic resin film including an electrode film on one face and ribs on the other face and entirely partitioned by the ribs into a plurality of diaphragm regions. The synthetic resin film is attached to an entire outer periphery of the fixed electrode pole such that the ribs are in contact with the outer periphery.
Abstract:
A dynamic microphone includes: a diaphragm; a voice coil fixed to the diaphragm; a magnetic circuit which includes a magnetic gap in which the voice coil is arranged and generates a magnetic field in the magnetic gap; a volume reducing member which is attached to the magnetic circuit, is arranged in aback surface space of the diaphragm, and reduces, and reduces a volume in an air chamber in the back surface space; a communication passage which is formed along between the volume reducing member and the magnetic circuit and communicates the back surface space with a back side air chamber; and an acoustic resistance which is attached to the magnetic circuit and intervenes between the communication passage and the back side air chamber.
Abstract:
A microphone includes a volume reduction filling member therein. The volume reduction filling member includes an elastic body having an insertion hole for inserting an electrode extraction member which extracts a generated current to a back end side by contacting a front end side thereof to a fixed electrode of a microphone unit, and reducing a volume inside a unit case. The elastic body is divided into a tip-side main body portion and a base-end-side flexible flange portion through a circular groove around the insertion hole from an outer peripheral face side of a base end portion thereof. When an outer peripheral edge portion of the base-end-side flexible flange portion receives an equal pressure toward a tip direction so as to bend, the elastic body concentrates a stress into a front portion side of the insertion hole through the tip-side main body portion.