Abstract:
The present disclosure relates to a retina imaging method in which a light from a light source into two lights is dispersed, at least one eyeground image of the eyeball at a first magnification is obtained by adjusting the paths of the two lights incident on the eyeball, and a plurality of DIC images are obtained at a second magnification higher than the first magnification with respect to the retina of the entirety of the obtained at least one eyeground image by adjusting the paths of the two lights incident on the eyeball.
Abstract:
Disclosed are an apparatus for estimating a pedestrian position based on pedestrian motion recognition, and a method therefor. The method for estimating the pedestrian position based on pedestrian motion recognition includes recognizing a specific motion of a plurality of motions of the pedestrian, performing a unique pedestrian dead-reckoning (PDR) technique corresponding to the recognized specific motion among unique PDR techniques for each of the plurality of motions of the pedestrian, and estimating the pedestrian's position by the performed unique PDR technique.
Abstract:
Provided is an extreme ultra-violet (EUV) beam generation apparatus using multi-gas cell modules in which a gas is prevented from directly flowing into a vacuum chamber by adding an auxiliary gas cell serving as a buffer chamber to a main gas cell, a diffusion rate of the gas is decreased, a high vacuum state is maintained, and a higher power EUV beam is continuously generated.
Abstract:
Provided are an apparatus and method for calibrating an extreme ultraviolet (EUV) spectrometer in which a wavelength of a spectrum of EUV light used for EUV lithography and mask inspection technology can be measured accurately.
Abstract:
Provided is a pulse laser apparatus for generating laser light. The apparatus includes a first mirror and a second mirror which are disposed at both ends of a resonator and configured to reflect the laser light, a gain medium disposed between the first and second mirrors and configured to amplify and output light incident from an outside, an etalon configured to adjust a pulse width of the laser light, and an acousto-optic modulator disposed between the first and second mirrors and configured to form a mode-locked and Q-switched signal from the laser light, in which some of the laser light is output through either the first or second mirror to outside the resonator.
Abstract:
A photoluminescence wavelength tunable material may include a composite including a graphene oxide layer and metal nanoparticles attached on the graphene oxide layer. By attaching the metal nanoparticles to the graphene oxide, the photoluminescence wavelength (i.e., the color of emitted light) of the graphene oxide may be tuned while maintaining the structure and physical properties of graphene oxide. The photoluminescence wavelength tunable material may be applied to an energy harvesting device such as a solar cell which exhibits high efficiency with less loss of light.
Abstract:
Provided is an apparatus for cell particle sorting based on microfluidic-chip flow, by using a design in which Dean flow focusing occurring in a spiral channel and hydrodynamic filtration are coupled. The apparatus comprises a first substrate including a spiral channel having an inner surface and an outer surface based on a radius of curvature, a sample solution inlet, a medium inlet, and a spiral inner-outlet and a spiral outer-outlet both for discharging the particles, and a second substrate including a main channel in which the sample solution discharged from the first substrate and passing through an inter-substrate way flows and a cut-off width WC is set, a side channel allowing a medium introduced into the medium inlet to flow to focus the sample solution on a sidewall of the main channel, a plurality of branch channels connected to the sidewall of main channel and configured to receive the particles from the main channel, a main channel outlet, and at least one branch channel outlet.
Abstract:
The present disclosure relates to a retina imaging method in which a light from a light source into two lights is dispersed, at least one eyeground image of the eyeball at a first magnification is obtained by adjusting the paths of the two lights incident on the eyeball, and a plurality of DIC images are obtained at a second magnification higher than the first magnification with respect to the retina of the entirety of the obtained at least one eyeground image by adjusting the paths of the two lights incident on the eyeball.
Abstract:
Provided are a saturable absorber including at least one material selected from a group of MXenes, and a Q-switching and mode-locked pulsed laser system using the same.
Abstract:
Provided is a method of analyzing binding efficiency of adhesive nanoparticles. The method includes (a) injecting a solution containing nanoparticles into a first chamber slide, (b) evaporating only the solution from the first chamber slide into which the solution containing the nanoparticles is injected, and measuring a saturation temperature using a thermal imager while radiating light from a light source, (c) injecting cells into a second chamber slide, (d) injecting a solution containing nanoparticles into the second chamber slide in which the cells are cultured, (e) removing nanoparticles which are not bound to the cells from the second chamber slide into which the cells and the nanoparticles are injected, and (f) evaporating only the solution from the second chamber slide from which the nanoparticles are removed, and measuring a saturation temperature using a thermal image while radiating light from the light source.