Abstract:
An optical transmission assembly includes a first optical-electrical conversion module, a second optical-electrical conversion module and a optical waveguide connecting the first and the second optical-electrical conversion modules for transmitting optical signals. The first optical-electrical conversion module and the second optical-electrical conversion module each includes a circuit board, an optical signal emitting member, an optical signal receiving member, and a cover. The optical signal emitting member and the optical signal receiving member are mounted on the circuit board. The circuit board defines a positioning groove. The cover includes a latching portion latching with the positioning groove. The cover defines a latching groove. The optical waveguide includes a inserting portion to latch with the latching groove. The present disclosure further provides an optical-electrical conversion module.
Abstract:
A wireless communication network system includes a signal source terminal, a user terminal, an electrical-optical conversion module, and an optical-electrical conversion module. The electrical-optical conversion module electrically connects with the signal source terminal, for receiving electrical signals sent by the signal source terminal and converting the electrical signals into optical signals. The optical-electrical conversion module electrically connects with the user terminal, for receiving the optical signals and converting the optical signals into electrical signals. The signal source terminal, the user terminal, the electrical-optical conversion module and the optical-electrical conversion module cooperatively build, define, or form a wireless optical communication network.
Abstract:
An optical transmission assembly includes a base plate, an optical signal emitting member, an efferent optical fiber, an optical coupler, an afferent optical fiber, and an optical signal receiving member. The optical signal emitting member is mounted on or besides the base plate. The optical signal isolator is mounted on the base plate, and alignes with the optical signal emitting member. The efferent optical fiber is mounted on the base plate. The optical coupler is located besides the base plate, coupling with the optical signal isolator via the efferent optical fiber. The afferent optical fiber is mounted on the base plate. The optical signal receiving member is mounted on or besides the base plate, coupling with the optical coupler via the afferent optical fiber. The present disclosure further includes a bidirectional and double-frequency optical transmission module having the optical transmission assembly.
Abstract:
A digital light processing projector includes a light emitting diode (LED), a laser, a rotatable optical element, a reflector, a first filter, a second filter, a digital micro-mirror device (DMD), and a projection lens. The LED and the laser respectively emit a first and second homogeneous lights. The rotatable optical element converts a first portion of the second homogeneous light to a third homogeneous light, reflects the third homogeneous light, and transmits a second portion of the second homogeneous light. The reflector reflects the third homogeneous light. The first filter transmits the first homogeneous light, and reflects the second portion to the second filter. The second filter transmits the second portion and the first homogeneous light, and reflects the third homogeneous light to the DMD. The DMD modulates the first, second and third homogeneous lights to obtain optical images. The projection lens projects the optical images on a screen.
Abstract:
An optical fiber connecting assembly includes two optical-electrical conversion modules and a plurality of optical fibers for connecting with the optical-electrical conversion modules. The optical-electrical conversion module includes a circuit board, an optical signal receiving member and an optical signal emitting member mounted on the circuit board, a cover, and several lenses. The cover covers the optical signal receiving member and the optical signal emitting member, and is fixed with the circuit board with glue. A connecting surface of the cover facing towards the circuit board defines a glue-overflow hole, for receiving excessive glue. The first lenses are mounted on the cover, and couple with the optical signal receiving member and the optical signal emitting member, respectively. Each end of the optical fibers inserted into the cover and couple with the first lenses of one corresponding optical-electrical conversion module. The present disclosure further includes an optical-electrical conversion module thereof.
Abstract:
An exemplary assembly device includes a first loading plate, a movable pole, a driving element, a first camera module, a transparent fetching element, a first processor, a first adjusting element, and a controller. The first loading plate loads a first workpiece. The movable pole is positioned above the first loading plate. The driving element drives the movable pole. The first camera module is positioned on the movable pole, and captures an image of the first workpiece to obtain a first pre-compared image. The fetching element is positioned on the movable pole. The first processor determines whether the first workpiece deviates from a standard position through comparing the first pre-compared image with a first standard image. The first adjusting element adjusts the first workpiece to the standard position. The controller controls the fetching element and the driving element cooperatively to assemble the first workpiece to a second workpiece.
Abstract:
In a testing method for an LD, an LD die is held. Then, electric current increasing with a fixed increment and having a sequence of current values is supplied to the LD die to drive the LD die to emit light and a sequence of voltage values across the LD die and corresponding to the sequence of current values, respectively, is metered. A sequence of power values corresponding to the sequence of current values, respectively, is also metered. Next, an electro-optical property of the LD die is determined according to the sequence of current values, the sequence of voltage values, and the sequence of power values. Finally, if the LD die is determined to be qualified based upon the electro-optical property of the LD die, the LD die is packaged into the LD.
Abstract:
A vehicle lighting device includes a body, a light source and a reflecting module. The body defines an outputting opening. The light source includes an LED. The reflecting module includes a first reflector, a second reflector and a third reflector. One part of light incident to the first reflector is firstly reflected by the first reflector, secondly reflected by the second reflector, thirdly reflected by the third reflector, and finally travels out of the body via the outputting opening. Another part of the light incident to the first reflector is firstly reflected by the first reflector, secondly reflected by the third reflector, and finally travels out of the body via the outputting opening. The rest part of the light is incident to the third reflector and then is reflected by the third reflector to travel out of the body via the outputting opening.