Abstract:
An optical transmission module includes a printed circuit board (PCB) including a first surface and an opposite second surface, a ceramic substrate mounted on the first surface, a light emitting diode and a photodiode carried on the ceramic substrate, an optical printed circuit board (OPCB) mounted on the second surface, a first reflective unit and, and a second reflective unit. The OPCB includes a flexible substrate which carries a first planar optical wave guide corresponding the first reflective unit and a second planar optical wave guide corresponding the second reflective unit. The PCB defines a first through hole aligned with the light emitting diode and the first reflective unit and a second through hole aligned with the photodiode and the second reflective unit.
Abstract:
A computer data transmission system includes a CPU, a photoelectrical conversion module electrically connected to the CPU, a plurality of I/O interface cards, and a plurality of first optical fibers. The photoelectrical conversion module includes a plurality of photoelectrical conversion units. Each I/O interface card includes at least one photoelectrical conversion unit for converting electrical signals to optical signals or converting optical signals to electrical signals. The first optical fibers connect the photoelectrical conversion units of the I/O interface cards and the photoelectrical conversion units of the photoelectrical conversion module. The photoelectrical conversion unit of the photoelectrical conversion module receives electrical signals outputted by the CPU, and convert the electrical signals to optical signals. The converted optical signals are transmitted to the photoelectrical conversion unit of the I/O interface card, and the photoelectrical conversion unit of the I/O interface card converts the optical signals to electrical signals.
Abstract:
An optical transmission module includes a printed circuit board (PCB) including a first surface and an opposite second surface, a ceramic substrate mounted on the first surface, a light emitting diode and a photodiode carried on the ceramic substrate, an optical printed circuit board (OPCB) mounted on the second surface, a first reflective unit and, and a second reflective unit. The OPCB includes a flexible substrate which carries a first planar optical wave guide corresponding the first reflective unit and a second planar optical wave guide corresponding the second reflective unit. The PCB defines a first through hole aligned with the light emitting diode and the first reflective unit and a second through hole aligned with the photodiode and the second reflective unit.
Abstract:
In a testing method for a laser diode (LD) die, a sequence of current values of electric current increasing with a fixed increment is calculated. Then, control parameters are obtained. The electric current is applied to the LD die according to the control parameters. A sequence of voltage values across the LD die and a sequence of power values of light emitted form the LD die are measured according to the control parameters. A table and a graph are generated using the sequence of current values, the sequence of voltage values, and the sequence of power values. Both of the table and the graph indicate an electro-optical property of the LD die. Next, whether the LD die is qualified is determined based upon the table, the graph, and a predetermined electro-optical property.
Abstract:
An optical printed circuit board (OPCB) includes a rigid substrate, a first cladding layer, a core layer, and a second cladding layer. The first cladding layer is formed on the substrate, the core layer is formed on the first cladding layer, and the second cladding layer is formed on the core layer. The core layer defines optical waveguide patterns. The refractive rate of the core layer is greater than the refractive rate of the first cladding layer and the refractive rate of the second cladding layer.
Abstract:
A computer data transmitting system includes a PCI-E interface, a CPU, a first photoelectric conversion module, and a second photoelectric conversion module. The first photoelectric conversion module is electrically connected to the PCI-E interface. The second photoelectric conversion module is electrically connected to the CPU. The first photoelectric conversion module and the second photoelectric conversion module are connected to each other by at least one optical fiber. A motherboard using the computer data transmitting system is also provided.
Abstract:
A computer data transmission system includes a CPU, a photoelectrical conversion module electrically connected to the CPU, a plurality of I/O interface cards, and a plurality of first optical fibers. The photoelectrical conversion module includes a plurality of photoelectrical conversion units. Each I/O interface card includes at least one photoelectrical conversion unit for converting electrical signals to optical signals or converting optical signals to electrical signals. The first optical fibers connect the photoelectrical conversion units of the I/O interface cards and the photoelectrical conversion units of the photoelectrical conversion module. The photoelectrical conversion unit of the photoelectrical conversion module receives electrical signals outputted by the CPU, and convert the electrical signals to optical signals. The converted optical signals are transmitted to the photoelectrical conversion unit of the I/O interface card, and the photoelectrical conversion unit of the I/O interface card converts the optical signals to electrical signals.
Abstract:
A projector includes a case, a projection lens, a shielding plate, and a controller received in the case. The case includes a sidewall defining an aperture. The projection lens is used for projecting a cone of light rays which passes through the aperture and a projection area. The shield plate is positioned on the sidewall. The driver is used for driving the shield plate to any of desired positions ranging from a first position in which the shield plate exposes the aperture to a second position in which the shield plate shields the aperture. The barrier detection device is used for generating a first signal if detecting no barrier presents in the projection area and generating a second signal if detecting a barrier presents in the projection area. The controller is used for controlling the driver to drive the shield plate to the first position if receiving the first signal.
Abstract:
An optical printed circuit board includes a substrate, a first cladding layer, a core layer, and a second cladding layer. The first cladding layer is formed on the substrate and defines a receiving groove. The core layer is received in the receiving groove. The second cladding layer is formed on the core layer. The refractive index of the core layer is greater than that of the first cladding layer and that of the second cladding layer. The core layer includes a bottom surface, a first refractive surface, and a second refractive surface. An included angle between the bottom surface and the first refractive surface is about 135 degrees. An included angle between the bottom surface and the second refractive surface is about 135 degrees.
Abstract:
An optical coupling module includes a substrate, a circuit board defining two through holes, an optical waveguide positioned between the substrate and the circuit board, and an optical assembly. The optical waveguide includes a core and a clad, each core comprises two coupling surfaces corresponding to the two through holes. At least one coupling surfaces is in an arcuate shape. The clad covers the core, except for the two coupling surfaces exposing out of the clad. The optical assembly formed on the circuit board comprises an optical emitting element and an optical receiving element. The optical emitting element and the optical receiving element are positioned above the two through holes, respectively. Light emitted from the optical emitting element enters the optical waveguide via one of the coupling surface, and leaves from another coupling surface to reach the optical receiving element. The coupling surface is capability of focusing light.