Abstract:
Compounds as defined herein are provided which are useful in (1) diagnostic methods for detecting and/or identifying cells presenting PSMA; (2) compositions comprising a compound of the invention together with a pharmaceutically acceptable diluent; and (3) methods for imaging prostate cancer cells.
Abstract:
A method and device for monitoring the position of radioactive materials in vehicles relates to a technical field of monitoring of radioactive materials. The method comprises following steps: powering on a monitoring device, after initializing, the device automatically enters into background mode to acquire and process gamma and neutron detection data so as to obtain and update a background count rate in real time, and an image surveillance system enters into surveillance state; occupancy detector detects that a vehicle enters into monitoring channel, meanwhile the monitoring device automatically enters into occupancy mode, and performs data acquisition process for gamma and neutron detection under the occupancy mode in accordance with the time required by an alarm algorithm, so as to obtain respective total count rates; speed detector detects the times T1 and T2 for the vehicle when it reaches two points with a distance L, and then calculates out the vehicle's speed V; obtaining an alarm threshold by using a special algorithm on the basis of alarming algorithm, particularly, the background count rate updated in real time, and sending an alarm signal when the total count rate exceeds the alarm threshold; transmitting the alarm signal to the image surveillance system via a control interface to notify it of starting to record, meanwhile sending an alarm command to an audio and visual alarm system to inform it of giving out an alarm; with the help of the results of radioactivity detection, speed detection and image capturing, a local computer specifies the position where the radioactive material(s) locate(s) with methods of horizontal and vertical positioning. The present invention can easily and quickly specify the very vehicle and the exact position the radioactive material(s) locate(s) so that the radioactive material(s) can be conveniently isolated and processed subsequently. In this way, time spent on detection has been greatly reduced and lots of human power has been saved.
Abstract:
A method and device for monitoring the position of radioactive materials in vehicles relates to a technical field of monitoring of radioactive materials. The method comprises following steps: powering on a monitoring device, after initializing, the device automatically enters into background mode to acquire and process gamma and neutron detection data so as to obtain and update a background count rate in real time, and an image surveillance system enters into surveillance state; occupancy detector detects that a vehicle enters into monitoring channel, meanwhile the monitoring device automatically enters into occupancy mode, and performs data acquisition process for gamma and neutron detection under the occupancy mode in accordance with the time required by an alarm algorithm, so as to obtain respective total count rates; speed detector detects the times T1 and T2 for the vehicle when it reaches two points with a distance L, and then calculates out the vehicle's speed V; obtaining an alarm threshold by using a special algorithm on the basis of alarming algorithm, particularly, the background count rate updated in real time, and sending an alarm signal when the total count rate exceeds the alarm threshold; transmitting the alarm signal to the image surveillance system via a control interface to notify it of starting to record, meanwhile sending an alarm command to an audio and visual alarm system to inform it of giving out an alarm; with the help of the results of radioactivity detection, speed detection and image capturing, a local computer specifies the position where the radioactive material(s) locate(s) with methods of horizontal and vertical positioning. The present invention can easily and quickly specify the very vehicle and the exact position the radioactive material(s) locate(s) so that the radioactive material(s) can be conveniently isolated and processed subsequently. In this way, time spent on detection has been greatly reduced and lots of human power has been saved.
Abstract:
FIG. 1 is a front view of the lamp showing our new design; FIG. 2 is a rear view thereof; FIG. 3 is a left view thereof; FIG. 4 is a right view thereof; FIG. 5 is a top view thereof; FIG. 6 is a bottom view thereof; FIG. 7 is a perspective view thereof; and, FIG. 8 is another perspective view of the lamp in a tilted state. The broken lines shown in the drawings illustrate portions of the article that form no part of the claimed design.
Abstract:
FIG. 1 is a front view of the lamp showing our new design; FIG. 2 is a rear view thereof; FIG. 3 is a left view thereof; FIG. 4 is a right view thereof; FIG. 5 is a top view thereof; FIG. 6 is a bottom view thereof; FIG. 7 is a perspective view of thereof; and, FIG. 8 is another perspective view of the lamp in a tilted state. The broken lines shown in the drawings illustrate portions of the article that form no part of the claimed design.
Abstract:
Compounds as defined herein are provided which are useful in (1) diagnostic methods for detecting and/or identifying cells presenting PSMA; (2) compositions comprising a compound of the invention together with a pharmaceutically acceptable diluent; and (3) methods for imaging prostate cancer cells.
Abstract:
The present invention relates to the fields of radioactive material detection and X-ray radiation imaging inspection, and provides a system and method for performing radioactive material detection and X-ray radiation imaging inspection simultaneously at the same place, thereby solving the problem that the two means have to be conducted separately, as in the prior art. The integrated system of the invention comprises: an X-ray NII system for performing X-ray radiation imaging inspection on the object under examination; a radiation monitor placed adjacent to the X-ray NII system device to detect the radioactive rays emitted by the object under examination; the radiation monitor sets, within the detection energy region thereof, a lower limit of detection to distinguish the energy region of the detected X-rays emitted by the X-ray detection device from the energy region of the radioactive rays emitted by the object under examination, and detects the energy in the energy region higher than said lower limit of detection. The present invention realizes a compact integration of the two devices, and greatly saves space and time resources.
Abstract:
The present invention relates to the fields of radioactive material detection and X-ray radiation imaging inspection, and provides a system and method for performing radioactive material detection and X-ray radiation imaging inspection simultaneously at the same place, thereby solving the problem that the two means have to be conducted separately, as in the prior art. The integrated system of the invention comprises: an X-ray NII system for performing X-ray radiation imaging inspection on the object under examination; a radiation monitor placed adjacent to the X-ray NII system device to detect the radioactive rays emitted by the object under examination; the radiation monitor sets, within the detection energy region thereof, a lower limit of detection to distinguish the energy region of the detected X-rays emitted by the X-ray detection device from the energy region of the radioactive rays emitted by the object under examination, and detects the energy in the energy region higher than said lower limit of detection. The present invention realizes a compact integration of the two devices, and greatly saves space and time resources.
Abstract:
The alignment-free solid laser of the invention is characterized in that, an orientation prism having three inner surfaces perpendicular to one another, a bottom of equilateral triangle or circle shape, a corner apex located on the axis of the active material is located in front of one end of the active material and is used as a total reflective mirror of the resonant cavity, the other end of the active material is coated with a transitive-reflective film and is used as an output mirror, such that a laser resonant cavity is formed. This alignment-free solid laser has a simple structure, strong ability of misalignment-resistance, high stability, improved beam quality and reduced damage. Besides, it is easy to be operated and is easy to be standardized and modularized. It can be extensively used in military, industrial processing, medical and scientific research fields.