Abstract:
In the present invention, excitation light is irradiated onto an analysis chip that has been placed in a chip holder, reflected light or transmitted light from the analysis chip is detected, and as a result the position information of the analysis chip is obtained. On the basis of this position information, the chip holder is moved by a conveyance stage and thereby moved to a measurement position. Excitation light is irradiated onto the analysis chip that is disposed at the measurement position, and fluorescence emitted from a fluorescent substance that marks the substance to be detected is detected.
Abstract:
A measurement chip including a prism, a metal film, and a capturing body is prepared. In a state in which a specimen is present on the metal film, scattered light obtained when first light which passes through the metal film and the specimen is scattered in the specimen when the first light is applied to the metal film from a prism side at a first incident angle smaller than a critical angle is detected. In a state in which a substance to be measured is captured by the capturing body and the specimen is not present on the metal film, a signal indicating an amount of the substance to be measured generated in the measurement chip when second light is applied to the metal film at a second incident angle not smaller than the critical angle from the prism side is detected. On the basis of a hematocrit value of the specimen determined from a light amount of the scattered light, a measurement value indicating the amount of the substance to be measured determined from the signal is corrected.
Abstract:
Provided is a temperature control system applied to an apparatus for analyzing a sample using a pipette nozzle and a reaction container, including a pipette tip temperature controller that heats a pipette tip which is fitted on the pipette nozzle and aspirates or discharges liquid and a reaction container temperature controller that heats the reaction container. The pipette tip temperature controller heats, in a concentrated manner, at least a distal end portion of the pipette tip of the pipette nozzle located at a predetermined heating position with hot air emitted from a heat source and is configured such that a distal end is capable of arriving at the reaction container by lowering the pipette nozzle from the heating position.
Abstract:
A surface plasmon fluorescence analysis device that has a chip holder, a light source, an angle adjustment unit, a light sensor, a filter holder, an excitation light cut filter, a scattered light transmission unit, a transmission adjustment unit, and a control unit. As seen in plan view, the area occupied by the scattered light transmission unit is arranged on the excitation light cut filter or on the filter holder and is smaller than the area of a fluorescence transmission region as seen in plan view.
Abstract:
A specimen containing blood is divided into a first specimen and a second specimen. The blood in the second specimen is hemolyzed. The first specimen containing a substance to be measured is introduced into an accommodating unit and a measurement value indicating an amount of the substance to be measured in the first specimen in a state in which the blood is not hemolyzed is acquired. In a state in which the second specimen in a state in which the blood is hemolyzed is present in the accommodating unit of a measurement chip, second light acquired when first light including light of a wavelength absorbed by a red blood cell passes through the second specimen in the accommodating unit is detected. On the basis of a detection result of the second light, a hematocrit value of the specimen is determined. The measurement value is corrected on the basis of the hematocrit value.
Abstract:
A reaction method includes a reaction step of reacting two or more substances with each other by using a pipette tip, attached to a pipette nozzle, for sucking or discharging a liquid to supply a liquid to a reaction field and remove the liquid from the reaction field a plurality of times. The reaction method further includes: a first process of, prior to the reaction step, detecting an end height of the pipette tip and setting a reference height of the pipette nozzle on the basis of the end height of the pipette tip; and a second process of correcting, in a course of the reaction step, the height of the pipette nozzle from the reference height so as to cancel out variation in the end height of the pipette tip due to a change in the temperature of the pipette tip.
Abstract:
An optical sample detection system includes: a sensor chip including a dielectric member, a metal film adjacent to an upper surface of the dielectric member, a reaction layer adjacent to an upper surface of the metal film, and a lid member disposed on an upper surface of the reaction layer; a chip holding unit for holding the sensor chip; and a light projecting unit that irradiates the metal film with excitation light through the dielectric member. A sample is detected by irradiating the metal film with excitation light through the dielectric member. The lid member is wider than the dielectric member in an optical path cross section of the excitation light.
Abstract:
This detection device has a holder, light irradiation unit, angle adjustment unit, light receiving sensor, light receiving optical system, optical filter, and a control unit. The light receiving optical system guides light from a detection chip to the light receiving sensor. The optical filter is disposed in the light receiving optical system, blocks a part of plasmon scattered light, and passes, out of the light emitted from the detection chip, a part of the plasmon scattered light, and fluorescence emitted from a fluorescent material. The light receiving sensor detects the fluorescent light, and the part of the plasmon scattered light, which have been emitted from the detection chip and passed the optical filter. On the basis of the detection results of the plasmon scattered light, the control unit controls the angle adjustment unit, and adjusts the incident angle of the excitation light to a predetermined incident angle.
Abstract:
In a detection method, a first pressure within a pipette tip is measured when air is sucked into or expelled from the leading end of the pipette tip in a state where the leading end of the pipette tip and a reference part of a solid are separated. A second pressure within the pipette tip is measured when air is sucked into or expelled from the leading end of the pipette tip in a state where the leading end of the pipette tip and the reference part of the solid are closer than in the first step. After the first step and second step, the position of the leading end of the pipette tip in relation to the reference part is detected on the basis of the difference between the first pressure measured in the first step and the second pressure measured in the second step.