Abstract:
A computer model of a physical structure (or object) can be generated using context-based hypothesis testing. For a set of point data, a user selects a context specifying a geometric category corresponding to the structure shape. The user specifies at least one seed point from the set that lies on a surface of the structure of interest. Using the context and point data, the system loads points in a region near the seed point(s), and determines the dimensions and orientation of an initial surface component in the context that corresponds to those points. If the selected component is supported by the points, that component can be added to a computer model of the surface. The system can repeatedly find points near a possible extension of the surface model, using the context and current surface component(s) to generate hypotheses for extending the surface model to these points. Well-supported components can be added to the surface model until the surface of the structure of interest has been modeled as far as is well-supported by the point data.
Abstract:
A train control system includes a plurality of control subsystems for installation in respective locomotives. At least one of the control subsystems is configurable as a lead control subsystem, and at least one other control subsystem is configurable as a remote control subsystem. Each control subsystem preferably comprises a radio transceiver, a first processor connected to the radio transceiver for communicating with at least one other control subsystem, an electronic brake valve connected to the first processor, and an electro-pneumatic controller connected to the first processor and the electronic brake valve, for interfacing to the air brake system of the train. The first processor preferably comprises a locomotive computer interface for performing both distributed power and electronic air brake functions in cooperation with the locomotive control computer. The distributed power functions may comprise at least one of tractive effort and dynamic braking functions. The electronic air brake functions preferably comprise at least one of automatic service braking, independent braking, and emergency braking.
Abstract:
The present invention relates to compositions comprising blends of alkenyl aromatic polymers such as styrenic polymers (i.e. PS and HIPS) and bio-based or biodegradable polymers (i.e. PLA, PGA, PHA, PBS, PCL) compatibilized with styrene-based copolymers (i.e. styrene-ethylene-butylene-styrene (SEBS) block copolymers, maleated SEBS, styrene-maleic anhydride (SMA) copolymer, styrene-methyl methacrylate (SMMA) copolymer) or a mixture of two or more styrene-based copolymers such as SEBS and SMA. These novel compositions can be extruded and thermoformed to produce very low density food service and consumer foam articles such as plates, hinged lid containers, trays, bowls, and egg cartons with good mechanical properties.
Abstract:
A system comprises an accessory, a mobile unit module, and a battery pack module. The accessory is worn one of on and near a portion of a body of a user. The mobile unit module removably couples to the accessory. The battery pack module removably couples to one of the mobile unit and the accessory.
Abstract:
A method for providing wireless communications between a locomotive control unit (LCU) (14) on board a locomotive (16) and a portable operator control unit (OCU) (12) for use in controlling operation of the locomotive from an off-board location includes calculating a transmit bit error check value for a wireless message. The wireless message includes an explicit sequence number assigned to the message so that the explicit sequence number is implicitly encoded in the transmit bit error check value. The method also includes transmitting an encoded message between the OCU and the LCU with the transmit bit error check value and without the explicit sequence number effective to reduce a total amount information needed to be transmitted compared to a message including the explicit sequence number.
Abstract:
A system and method for wireless dictation and transcription includes an input device which is connected by the Internet to a computer. The user dictates into the input device which is stored as an audio file which is then sent to the computer for voice recognition training and/or batch transcription. After the audio file has been transcribed into a processed document, the document is available to the user either through the Internet or by e-mail.
Abstract:
A railway communication system (10) includes a transmitter (12) receiving an input and producing a communication signal (18). The communication signal (18) includes at least two different portions (20,22) for separately encoding respective indications (38,40) of the input. The system also includes a receiver (14) coupled to a controlled device, the receiver (14) extracting at least one of the respective indications (38,40) from the communication signal (18). The receiver controls the device responsive to the at least one extracted indications (38,40).
Abstract:
A low power, lightweight, collapsible and rugged antenna positioner for use in communicating with geostationary, geosynchronous and low earth orbit satellite. By collapsing, invention may be easily carried or shipped in a compact container. May be used in remote locations with simple or automated setup and orientation. Azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. Manual orientation of antenna for linear polarized satellites yields lower weight and power usage. Updates ephemeris or TLE data via satellite. Algorithms used for search including Clarke Belt fallback, transponder/beacon searching switch, azimuth priority searching and tracking including uneven re-peak scheduling yield lower power usage. Orientation aid via user interface allows for smaller azimuth motor, simplifies wiring and lowers weight. Tilt compensation, bump detection and failure contingency provide robustness.
Abstract:
A railway communication system (10) includes a transmitter (12) receiving an input and producing a communication signal (18). The communication signal (18) includes at least two different portions (20,22) for separately encoding respective indications (38,40) of the input. The system also includes a receiver (14) coupled to a controlled device, the receiver (14) extracting at least one of the respective indications (38,40) from the communication signal (18). The receiver controls the device responsive to the at least one extracted indications (38,40).
Abstract:
A remote control system (10) for a locomotive (16) includes a sensor (e.g. 15) on-board the locomotive for providing locomotive information. The system also includes a transmitter (13) for transmitting the locomotive information from the locomotive to an operator control unit (OCU) (12) off-board the locomotive. A graphical display (24) is associated with the OCU for displaying the locomotive information in a graphical format to an operator of the OCU. A locomotive control unit (LCU) (14) in communication with the OCU is operable to control the locomotive in response to a manipulation of the OCU by the operator.