Abstract:
Methods of forming a semiconductor device structure and sulfur dioxide etch chemistries. The methods and chemistries, which may be plasma chemistries, include use of sulfur dioxide and a halogen-based compound to form a trimmed pattern of a patterning material, such as a resist material, at a critical dimension with low feature width roughness, with low space width roughness, without excessive height loss, and without substantial irregularities in the elevational profile, as compared to trimmed features formed using conventional chemistries and trimming methods.
Abstract:
Some embodiments include an integrated assembly. The integrated assembly includes active regions which each have a digit-line-contact-region between a pair of capacitor-contact-regions. The capacitor-contact-regions are arranged in a pattern such that six adjacent capacitor-contact-regions form a substantially rectangular configuration. Conductive redistribution material is coupled with the capacitor-contact-regions and extends upwardly and laterally outwardly from the capacitor-contact-regions. Upper surfaces of the conductive redistribution material are arranged in a pattern such that seven adjacent of the upper surfaces form a unit of a substantially hexagonal-close-packed configuration. Capacitors are coupled with the upper surfaces of the conductive redistribution material.
Abstract:
A method used in forming an array of vertical transistors comprises forming pillars individually comprising an upper source/drain region, a channel region vertically below the upper source/drain region, and sacrificial material above the upper source/drain region. Intervening material is about the sacrificial material of individual of the pillars. The intervening material and the sacrificial material comprise different compositions relative one another. Horizontally-elongated and spaced conductive gate lines are formed individually operatively aside the channel region of the individual pillars. The sacrificial material is removed to expose the upper source/drain region of the individual pillars and thereby form an opening in the intervening material directly above the upper source/drain region of the individual pillars. Metal material is formed in individual of the openings directly against the upper source/drain region of the individual pillars and atop the intervening material laterally outside of the openings. The metal material that is atop the intervening material interconnects the metal material that is in the individual openings. The metal material is removed back to have an uppermost surface that is no higher than an uppermost surface of the intervening material and to disconnect it from interconnecting the metal material that is in the individual openings and thereby form a laterally-isolated individual metal-material plug in the individual openings.
Abstract:
Some embodiments include an integrated assembly having digit-line-contact-regions between pairs of capacitor-contact-regions. The capacitor-contact-regions are arranged with six adjacent capacitor-contact-regions in a substantially rectangular configuration. Conductive plugs are coupled with the capacitor-contact-regions. Conductive redistribution material is coupled with the conductive plugs. Upper surfaces of the conductive redistribution material are arranged in a substantially hexagonal-close-packed configuration. Digit lines are over the digit-line-contact-regions. Insulative regions are between the digit lines and the conductive plugs. The insulative regions contain voids and/or low-k dielectric material. Capacitors are coupled with the upper surfaces of the conductive redistribution material.
Abstract:
Some embodiments include an integrated assembly. The integrated assembly includes active regions which each have a digit-line-contact-region between a pair of capacitor-contact-regions. The capacitor-contact-regions are arranged in a pattern such that six adjacent capacitor-contact-regions form a substantially rectangular configuration. Conductive redistribution material is coupled with the capacitor-contact-regions and extends upwardly and laterally outwardly from the capacitor-contact-regions. Upper surfaces of the conductive redistribution material are arranged in a pattern such that seven adjacent of the upper surfaces form a unit of a substantially hexagonal-close-packed configuration. Capacitors are coupled with the upper surfaces of the conductive redistribution material.
Abstract:
A method of forming a semiconductor device comprises patterning a mask material adjacent to an array of transistors, forming an electrically conductive material between adjacent portions of the patterned mask material, forming an additional mask material over the patterned mask material to form a mask structure, the additional mask material having an arcuate cross-sectional shape, removing a portion of the additional mask material to reduce a spacing between adjacent portions of the additional mask material, and forming capacitor structures in openings between the mask structure. Additional methods of forming a semiconductor device, and related semiconductor devices and related systems are also disclosed.
Abstract:
A semiconductor device comprises semiconductive pillars; digit lines laterally between the semiconductive pillars; nitride caps vertically overlying the digit lines; nitride structures overlying surfaces of the nitride caps; redistribution material structures comprising upper portions overlying upper surfaces of the nitride caps and the nitride structures, and lower portions overlying upper surfaces of the semiconductive pillars; a low-K dielectric material laterally between the digit lines and the semiconductive pillars; air gaps laterally between the low-K dielectric material and the semiconductive pillars, and having upper boundaries below the upper surfaces of the nitride caps; and a nitride dielectric material laterally between the air gaps and the semiconductive pillars. Memory devices, electronic systems, and method of forming a semiconductor device are also described.
Abstract:
Some embodiments include a method of forming an integrated assembly. A construction is formed to include a structure having an exposed surface, and to include an opening proximate the structure. An aperture extends into the opening. A first material is deposited to form a mass along the exposed surface of the structure. Particles are sputtered from the mass and across the aperture. The particles agglomerate to form a sealant material which traps a void within the opening.
Abstract:
Methods of forming a semiconductor device structure and sulfur dioxide etch chemistries. The methods and chemistries, which may be plasma chemistries, include use of sulfur dioxide and a halogen-based compound to form a trimmed pattern of a patterning material, such as a resist material, at a critical dimension with low feature width roughness, with low space width roughness, without excessive height loss, and without substantial irregularities in the elevational profile, as compared to trimmed features formed using conventional chemistries and trimming methods.
Abstract:
A method of processing a polysilicon-comprising composition comprises forming a first wall comprising at least one recess in polysilicon. A second wall comprising polysilicon is formed. Material other than polysilicon is deposited within the at least one recess and over the polysilicon of the second wall. The material is etched selectively relative to polysilicon to expose polysilicon of the second wall and to leave the material within the at least one recess in the first wall. The exposed polysilicon of the second wall is etched selectively relative to the material within the at least one recess in the first wall. Other methods are disclosed.