Graph transformations to correct violations of service level objections in a data center
    11.
    发明授权
    Graph transformations to correct violations of service level objections in a data center 有权
    图形转换,以纠正在数据中心违反服务级别异议

    公开(公告)号:US08892607B2

    公开(公告)日:2014-11-18

    申请号:US13936851

    申请日:2013-07-08

    Applicant: NetApp, Inc.

    CPC classification number: G06F17/30312 G06F8/10 G06F9/00 G06F17/30

    Abstract: Graph transformations are used by a data management system to correct violations of service-level objectives (SLOs) in a data center. In one aspect, a process is provided to manage a data center by receiving an indication of a violation of a service-level objective associated with the data center from a server in the data center. A graph representation and a transformations data container are retrieved by the data management system from data storage accessible to the data management system. The transformations data container includes one or more transformations. The transformation is processed to create a mutated graph from a data center representation from the graph representation. An option for managing the data center is determined as a result of evaluating the mutated graphs.

    Abstract translation: 数据管理系统使用图形转换来纠正数据中心中服务级目标(SLO)的违规。 在一个方面,提供了一种通过从数据中心中的服务器接收与数据中心相关联的服务级别目标的违规的指示来管理数据中心的过程。 数据管理系统从数据管理系统可访问的数据存储中检索图表表示和转换数据容器。 变换数据容器包括一个或多个变换。 处理变换以从图表表示从数据中心表示创建突变图。 通过评估突变图来确定用于管理数据中心的选项。

    Controlling a dynamically instantiated cache
    12.
    发明授权
    Controlling a dynamically instantiated cache 有权
    控制动态实例化的缓存

    公开(公告)号:US09317430B2

    公开(公告)日:2016-04-19

    申请号:US14523655

    申请日:2014-10-24

    Applicant: NetApp, Inc.

    Abstract: A change in workload characteristics detected at one tier of a multi-tiered cache is communicated to another tier of the multi-tiered cache. Multiple caching elements exist at different tiers, and at least one tier includes a cache element that is dynamically resizable. The communicated change in workload characteristics causes the receiving tier to adjust at least one aspect of cache performance in the multi-tiered cache. In one aspect, at least one dynamically resizable element in the multi-tiered cache is resized responsive to the change in workload characteristics.

    Abstract translation: 在多层缓存的一层检测到的工作负载特性的改变被传送到多层高速缓存的另一层。 多个缓存元素存在于不同的层,并且至少一个层包括可动态调整大小的高速缓存元素。 所传达的工作负载特性的改变使得接收层在多层缓存中调整缓存性能的至少一个方面。 在一个方面,响应于工作负载特性的变化来调整多层缓存中的至少一个可动态调整大小的元素。

    SYSTEMS AND METHODS FOR TRACKING WORKING-SET ESTIMATES WITH A LIMITED RESOURCE BUDGET
    14.
    发明申请
    SYSTEMS AND METHODS FOR TRACKING WORKING-SET ESTIMATES WITH A LIMITED RESOURCE BUDGET 有权
    用有限的资源预算跟踪工作估算的系统和方法

    公开(公告)号:US20140310463A1

    公开(公告)日:2014-10-16

    申请号:US14315881

    申请日:2014-06-26

    Applicant: NetApp, Inc.

    CPC classification number: G06F12/0802 G06F12/0888 G06F2212/6042

    Abstract: Embodiments of the systems and techniques described here can leverage several insights into the nature of workload access patterns and the working-set behavior to reduce the memory overheads. As a result, various embodiments make it feasible to maintain running estimates of a workload's cacheability in current storage systems with limited resources. For example, some embodiments provide for a method comprising estimating cacheability of a workload based on a first working-set size estimate generated from the workload over a first monitoring interval. Then, based on the cacheability of the workload, a workload cache size can be determined. A cache then can be dynamically allocated (e.g., change, possibly frequently, the cache allocation for the workload when the current allocation and the desired workload cache size differ), within a storage system for example, in accordance with the workload cache size.

    Abstract translation: 这里描述的系统和技术的实施例可以利用对工作负载访问模式和工作集行为的性质的几个见解,以减少内存开销。 因此,各种实施例使得可以在有限的资源的当前存储系统中维持工作负载的高速缓存的运行估计。 例如,一些实施例提供了一种方法,其包括基于在第一监视间隔上从工作负载产生的第一工作集大小估计来估计工作负载的可缓存性。 然后,基于工作负载的可缓存性,可以确定工作负载高速缓存大小。 然后可以根据工作负载高速缓存大小来动态地分配高速缓存(例如,当当前分配和期望的工作负载高速缓存大小不同时,可以频繁地改变工作负载的高速缓存分配),例如在存储系统内。

    MODELER FOR PREDICTING STORAGE METRICS
    15.
    发明申请
    MODELER FOR PREDICTING STORAGE METRICS 有权
    预测存储量度的模型

    公开(公告)号:US20140136456A1

    公开(公告)日:2014-05-15

    申请号:US14143012

    申请日:2013-12-30

    Applicant: NetApp, Inc.

    CPC classification number: G06N99/005 G06F11/3409 G06F17/30294 G06F17/30587

    Abstract: Described herein is a system and method for dynamically managing service-level objectives (SLOs) for workloads of a cluster storage system. Proposed states/solutions of the cluster may be produced and evaluated to select one that achieves the SLOs for each workload. A planner engine may produce a state tree comprising nodes, each node representing a proposed state/solution. New nodes may be added to the state tree based on new solution types that are permitted, or nodes may be removed based on a received time constraint for executing a proposed solution or a client certification of a solution. The planner engine may call an evaluation engine to evaluate proposed states, the evaluation engine using an evaluation function that considers SLO, cost, and optimization goal characteristics to produce a single evaluation value for each proposed state. The planner engine may call a modeler engine that is trained using machine learning techniques.

    Abstract translation: 这里描述了用于动态管理用于集群存储系统的工作负载的服务级目标(SLO)的系统和方法。 可以生成和评估集群的建议状态/解决方案,以选择为每个工作负载实现SLO的状态/解决方案。 计划器引擎可以产生包括节点的状态树,每个节点表示提出的状态/解。 可以基于允许的新解决方案类型将新节点添加到状态树,或者可以基于接收到的时间约束来移除节点,以执行解决方案或解决方案的客户端认证。 计划器引擎可以调用评估引擎来评估提出的状态,评估引擎使用考虑SLO,成本和优化目标特征的评估函数,以产生每个建议状态的单个评估值。 计划器引擎可以调用使用机器学习技术训练的建模者引擎。

    Modeler for predicting storage metrics

    公开(公告)号:US09406029B2

    公开(公告)日:2016-08-02

    申请号:US14143012

    申请日:2013-12-30

    Applicant: NetApp, Inc.

    CPC classification number: G06N99/005 G06F11/3409 G06F17/30294 G06F17/30587

    Abstract: Described herein is a system and method for dynamically managing service-level objectives (SLOs) for workloads of a cluster storage system. Proposed states/solutions of the cluster may be produced and evaluated to select one that achieves the SLOs for each workload. A planner engine may produce a state tree comprising nodes, each node representing a proposed state/solution. New nodes may be added to the state tree based on new solution types that are permitted, or nodes may be removed based on a received time constraint for executing a proposed solution or a client certification of a solution. The planner engine may call an evaluation engine to evaluate proposed states, the evaluation engine using an evaluation function that considers SLO, cost, and optimization goal characteristics to produce a single evaluation value for each proposed state. The planner engine may call a modeler engine that is trained using machine learning techniques.

Patent Agency Ranking