Distributed modular solid-state lidar system

    公开(公告)号:US12153163B2

    公开(公告)日:2024-11-26

    申请号:US16523459

    申请日:2019-07-26

    Abstract: A LIDAR system includes a first optical transmitter comprising a plurality of first emitters, where each of the plurality of first emitters is positioned to generate an optical beam with a FOV at a target range when energized. A second optical transmitter includes a plurality of second emitters, where each of the plurality of second emitters is positioned to generate an optical beam with a FOV at the target range when energized. The first and second optical transmitters are positioned relative to each other so the FOVs of at least some of the optical beams generated by the first and second optical transmitter when energized overlap at the target range. An optical receiver includes a plurality of optical detectors, where a respective one of the plurality of optical detectors is positioned to detect a respective optical beam generated by at least one of the first and second optical transmitter and reflected by a target in the FOV at the target range. A controller includes a first and second output being connected to respective control inputs of the first and second optical transmitters, and a third output being connected to a control input of the optical receiver. The controller generates control signals at the first and second outputs that control energizing select ones of the plurality of first and the plurality of second emitters that generate optical beams with the FOVs that overlap at the target range and generating a control signal at the third output that activates selected ones of the plurality of optical detectors to detect optical beams reflected from an object at the target range.

    Noise adaptive solid-state LIDAR system

    公开(公告)号:US11906663B2

    公开(公告)日:2024-02-20

    申请号:US16366729

    申请日:2019-03-27

    Abstract: A LIDAR system includes an optical transmitter comprising a plurality of lasers, each illuminating a FOV in an illumination region. A transmitter controller has outputs connected to respective laser inputs. The transmitter controller generates electrical pulses at the outputs so that the lasers generate light in a desired pattern in the illumination region. An optical receiver has an input FOV in the illumination region and comprises a plurality of detectors, each having a FOV and being positioned to detect light over the illumination region; and a TOF measurement circuit that measures the TOF from the lasers to the detectors. The receiver calculates range information. An adaptive optical shutter positioned between the optical transmitter and the optical receiver has a transparent or reflected region FOV, where the optical shutter restricts illumination at the input of the optical receiver to a region which is smaller than the optical receiver FOV.

    Eye-Safe Long-Range LIDAR System Using Actuator

    公开(公告)号:US20200379088A1

    公开(公告)日:2020-12-03

    申请号:US16878140

    申请日:2020-05-19

    Abstract: A LIDAR system includes a plurality of lasers that generate an optical beam having a FOV. A plurality of detectors are positioned where a FOV of at least one of the plurality of optical beams generated by the plurality of lasers overlaps a FOV of at least two of the plurality of detectors. The lens system collimates and projects the optical beams generated by the plurality of lasers. An actuator is coupled to at least one of the plurality of lasers and the lens system to cause relative motion between the plurality of lasers and the lens system in a direction that is orthogonal to an optical axis of the lens system so as to cause relative motion between the FOVs of the optical beams generated by the plurality of lasers and the FOVs of the detectors.

    Distributed Modular Solid-State LIDAR System
    14.
    发明申请

    公开(公告)号:US20200041614A1

    公开(公告)日:2020-02-06

    申请号:US16523459

    申请日:2019-07-26

    Abstract: A LIDAR system includes a first optical transmitter comprising a plurality of first emitters, where each of the plurality of first emitters is positioned to generate an optical beam with a FOV at a target range when energized. A second optical transmitter includes a plurality of second emitters, where each of the plurality of second emitters is positioned to generate an optical beam with a FOV at the target range when energized. The first and second optical transmitters are positioned relative to each other so the FOVs of at least some of the optical beams generated by the first and second optical transmitter when energized overlap at the target range. An optical receiver includes a plurality of optical detectors, where a respective one of the plurality of optical detectors is positioned to detect a respective optical beam generated by at least one of the first and second optical transmitter and reflected by a target in the FOV at the target range. A controller includes a first and second output being connected to respective control inputs of the first and second optical transmitters, and a third output being connected to a control input of the optical receiver. The controller generates control signals at the first and second outputs that control energizing select ones of the plurality of first and the plurality of second emitters that generate optical beams with the FOVs that overlap at the target range and generating a control signal at the third output that activates selected ones of the plurality of optical detectors to detect optical beams reflected from an object at the target range.

Patent Agency Ranking