Support structure for lighting devices, corresponding lighting device and method

    公开(公告)号:US10302282B2

    公开(公告)日:2019-05-28

    申请号:US15839891

    申请日:2017-12-13

    Applicant: OSRAM GmbH

    Abstract: A support structure for electrically-powered lighting devices (e.g. LED modules) includes: an elongated laminar substrate having first and second mutually opposed surfaces, a layer of electrically-conductive material, e.g. copper, on the first surface of the laminar substrate, the layer including etching forming first electrically-conductive formations extending along the first surface of the laminar substrate, a distribution of electrically-conductive areas on the second surface of the laminar substrate, the distribution including electrically-conductive areas formed by means of etching and distributed with a constant separation pitch along the second surface of the laminar substrate, electrically-conductive vias extending through the laminar substrate to connect the first electrically-conductive formations and the electrically-conductive areas in said distribution, and a network of second electrically-conductive formations including electrically-conductive ink deposited (e.g. printed) on the second surface of the laminar substrate, with second electrically-conductive formations in said network being electrically connected with the electrically-conductive areas in said distribution.

    A SUPPORT STRUCTURE FOR LIGHTING DEVICES, CORRESPONDING LIGHTING DEVICE AND METHOD

    公开(公告)号:US20180163955A1

    公开(公告)日:2018-06-14

    申请号:US15839891

    申请日:2017-12-13

    Applicant: OSRAM GmbH

    Abstract: A support structure for electrically-powered lighting devices (e.g. LED modules) includes: an elongated laminar substrate having first and second mutually opposed surfaces, a layer of electrically-conductive material, e.g. copper, on the first surface of the laminar substrate, the layer including etching forming first electrically-conductive formations extending along the first surface of the laminar substrate, a distribution of electrically-conductive areas on the second surface of the laminar substrate, the distribution including electrically-conductive areas formed by means of etching and distributed with a constant separation pitch along the second surface of the laminar substrate, electrically-conductive vias extending through the laminar substrate to connect the first electrically-conductive formations and the electrically-conductive areas in said distribution, and a network of second electrically-conductive formations including electrically-conductive ink deposited (e.g. printed) on the second surface of the laminar substrate, with second electrically-conductive formations in said network being electrically connected with the electrically-conductive areas in said distribution.

Patent Agency Ranking