Abstract:
A wireless communication assembly stores configuration parameter sets for predefined spectral masks, including: a single channel mask for a base channel bandwidth, and defining target power levels for each of a base in-band bandwidth, base transition bandwidths, and a base floor bandwidth; and a bonded channel mask for a multiple of the base channel bandwidth, and defining target power levels for each of a bonded in-band bandwidth equivalent to the sum of the base in-band bandwidth and the base channel bandwidth, and bonded transition and floor bandwidths that are multiples of the base transition and floor bandwidths. A radio controller selects predefined channels each having the base channel bandwidth, for transmitting data to a recipient station; retrieves selected one of the configuration parameter sets based on the number of selected channels; and applies the selected configuration parameter set to data for transmission to the recipient station.
Abstract:
A computing system for recovery of lost access points in a distributed wireless local area network, including: (a) a host controller, (b) a plurality of access point, and (c) a plurality of stations. When setting up the network, the host controller is configured to register the plurality of access points, instruct the access points to send beacons to the plurality of stations, and perform a handshake to generate a unique encryption key for each of the plurality of stations. When the host controller detects that a physical access point has been lost and then recovered, it can optionally perform a handshake to generate a new encryption key and transmit this new encryption key to the other access points in the network before data communication commences to any of the stations through the recovered physical access point.
Abstract:
A method in a wireless access point (AP) for controlling medium access includes: transmitting a beacon frame defining (i) a beacon header interval (BHI), and (ii) a data transmission interval (DTI) divided into a predetermined number of scheduled periods, each scheduled period containing a set of uplink allocation request sub-periods; sending, to a client device, an uplink allocation request assignment indicating an assigned uplink allocation request sub-period from the set, that corresponds to the client device; during a current one of the scheduled periods, receiving an uplink allocation request from the client device during the assigned uplink allocation request sub-period; determining an uplink allocation sub-period for the client device based on the uplink allocation request; and during a next one of the scheduled periods, sending an indication of the uplink allocation sub-period to the client device.
Abstract:
A system is provided comprising: a host computing device including: a wireless transceiver; and a processor configured to generate multimedia data for transmission via the wireless transceiver; and a movably-mounted client device including: a first set of wireless transceivers; a controller connected to the output assembly and each of the wireless transceivers; the controller configured to: assess respective performance attributes for each of the first set of transceivers; and based on the performance attributes, select a transceiver from the first set to receive the multimedia data from the host computing device; and an output assembly for presenting the multimedia data.
Abstract:
A method in a transmitter station includes: generating payload data for transmission to a receiver station via a plurality of antennae of the transmitter station; selecting a number of transmit streams for transmission of the payload data; selecting respective modulation schemes for each of the transmit streams; according to the modulation schemes and to an active one of (i) a single-encoder mode and (ii) a per-stream encoder mode, generating the number of coded, modulated transmit streams; wherein each coded, modulated transmit stream contains a portion of the payload data; and providing the coded, modulated transmit streams to respective ones of the antennae for transmission to the receiver station.
Abstract:
A method in a wireless communications assembly having an antenna, a transceiver and a baseband processor, includes: at the transceiver: receiving, from the antenna, a modulated carrier signal having a carrier frequency and containing payload data; demodulating the carrier signal to extract a baseband signal having a baseband frequency and containing the payload data; generating from the baseband signal, at a converter, a digital baseband signal containing the payload data; at an encoder: receiving the digital baseband signal from the converter; generating an encoded digital baseband signal encoding the payload data for transmission at an operating frequency; the encoded digital baseband signal having at least a threshold proportion of signal level transitions that, when transmitted at the operating frequency, have transition frequencies outside a predefined restricted frequency band; and transmitting the encoded digital baseband signal to the baseband processor via an interface at the operating frequency.
Abstract:
A wireless receiver automatic gain control system includes: a coarse amplification subsystem that receives and amplifies a carrier-modulated signal; a demodulator that generates a baseband signal from the amplified carrier-modulated signal; a fine amplification subsystem that amplifies the baseband signal; and a controller connected to the amplification subsystems. The controller: obtains a unified gain value for the amplification subsystems; based on the unified gain value, selects (i) one of a plurality of coarse gain values defining a set of coarse gain steps each spanning a plurality of unified gain steps, and (ii) one of a plurality of fine gain values defining a set of fine gain steps each spanning a single unified gain step; and sets (i) the gain of the coarse amplification subsystem to the selected coarse gain value, and (ii) the gain of the fine amplification subsystem to the selected fine gain value.
Abstract:
A wireless receiver automatic gain control system includes: a coarse amplification subsystem that receives and amplifies a carrier-modulated signal; a demodulator that generates a baseband signal from the amplified carrier-modulated signal; a fine amplification subsystem that amplifies the baseband signal; and a controller connected to the amplification subsystems. The controller: obtains a unified gain value for the amplification subsystems; based on the unified gain value, selects (i) one of a plurality of coarse gain values defining a set of coarse gain steps each spanning a plurality of unified gain steps, and (ii) one of a plurality of fine gain values defining a set of fine gain steps each spanning a single unified gain step; and sets (i) the gain of the coarse amplification subsystem to the selected coarse gain value, and (ii) the gain of the fine amplification subsystem to the selected fine gain value.
Abstract:
A method in a wireless access point (AP) having an antenna controllable to transmit and receive using a set of AP sectors, includes: transmitting a plurality of beacon instances using each of the AP sectors, each beacon instance associated rotation schedule data defining a plurality of listening time slots corresponding to respective AP sectors; activating a rotating listening mode using the AP sectors in sequence according to the rotation schedule data; in response to detecting a sector sweep initiation message from a client device using an active one of the AP sectors, communicating with the client device to select an AP sector to use in establishing a link with the client device.
Abstract:
A method in a first wireless station of establishing a connection with a second wireless station includes: generating a frame including a capabilities element having: a core capabilities field containing a predefined sequence of core subfields having respective predefined lengths; the core subfields containing respective first core values defining core capabilities of the first wireless station; and at least one extended capability field containing: an extended capability identifier subfield containing an identifier of one of a plurality of predefined extended capabilities; an extended capability length subfield containing an extended capability length value; and an extended capability payload subfield having a length equal to the extended capability length value; the payload subfield containing a first extended value defining an extended capability of the first wireless station; and responsive to generating the frame, transmitting the frame.