Abstract:
A system and method for monitoring a fiber curing system is disclosed. In one example, transmittance of a curing tube is determined so that curing of a coating applied to a fiber may be more uniform.
Abstract:
A liquid chromatography flow cell including an integrated light source and an integrated detection chamber. The integrated light source includes a plurality of light emitting diodes (LEDs), wherein each LED emits light of a specific wavelength. The light emitted from the integrated light source is directed to pass through a sample in a flow chamber of the flow cell without any optical conditioning, and the light not absorbed by the sample flows out of the flow chamber directly into the integrated detection chamber, where an intensity of the unabsorbed light is measured by detectors coupled to the integrated chamber.
Abstract:
An edge-curing device may comprise a cylindrical lens, a linear array of light-emitting elements, and an aperture, each aligned symmetrically about a longitudinal plane in a housing, wherein the cylindrical lens is positioned between the linear array of light-emitting elements and the aperture, the aperture spans the length of the cylindrical lens and is positioned directly adjacent to an emitting face of the cylindrical lens, and light emitted from the linear array of light-emitting elements and passing through the cylindrical lens is emitted from the emitting face and focused by the aperture within a beam width centered about the longitudinal plane.
Abstract:
A system and method for monitoring a fiber curing system is disclosed. In one example, transmittance of a curing tube is determined so that curing of a coating applied to a fiber may be more uniform.
Abstract:
A light source may comprise a housing, a window mounted in a front plane of the housing, a window length spanning a front plane length, and a linear array of light-emitting elements within the housing. The linear array may be aligned with and emit light through the window, and the linear array may span the window length, wherein first and last light-emitting elements of the linear array are positioned adjacent to widthwise edges of the window, and wherein window sidewalls at the widthwise edges are aligned flush with housing sidewalls.
Abstract:
A device for UV curing a coating or printed ink on a workpiece such as an optical fiber comprises at least two UV light sources equally spaced around a central axis, each UV light source comprising a reflector and a cylindrical lens, and the UV curing device configured to receive a workpiece along the central axis. The reflectors are configured to substantially reduce the emitting angle of light from the UV light sources, thereby directing the light substantially through the cylindrical lenses, the cylindrical lenses focusing the light intensely along a surface of the workpiece.
Abstract:
A method may comprise: supplying light energy from a light emitting device principally along a first axis; sensing the light energy with a light sensing device oriented along a second axis, wherein the second axis is oriented substantially orthogonally to the first axis; and adjusting the light energy in response to the sensed light energy. In this way, an amount of retro-reflected light incident at the light sensing device may be reduced, measurement error of the light sensing device may be reduced, and control precision and reliability of the lighting system for curing a work piece can be increased.
Abstract:
A light source may comprise a housing, a window mounted in a front plane of the housing, a window length spanning a front plane length, and a linear array of light-emitting elements within the housing. The linear array may be aligned with and emit light through the window, and the linear array may span the window length, wherein first and last light-emitting elements of the linear array are positioned adjacent to widthwise edges of the window, and wherein window sidewalls at the widthwise edges are aligned flush with housing sidewalls.
Abstract:
A system and method for monitoring and operating one or more light emitting devices is disclosed. In one example, light intensity within a dual elliptical reflecting chamber is sensed and operation of a fiber curing system is adjusted in response to an amount of sensed light energy.
Abstract:
Systems are provided for a frame of an optic element of a lighting system. In one example, a baffle frame including extended exterior sidewalls and inner angled walls extending below a bottom surface of the optic element may reduce light reflecting off a workpiece and escaping outside and interior of the baffle frame.