Abstract:
A slim solar module is proposed. It comprises a solar laminate comprising plural solar cells interposed between front and rear cover sheets, a frame enclosing the solar laminate and at least one reinforcement strut arranged at a rear surface of the solar laminate. A ratio between a frame surface and a frame thickness shall be between 45000 and 70000. For example, the frame may have a thickness of less than 35 mm. Specifically, the frame may have a length of 1665 mm, a width of 991 mm and a thickness of 30 mm. Due to the reduced thickness, the solar module has a reduced volume being beneficial during transport to a destination location. However, the thickness has been optimized to, with the reinforcement struts, still providing for sufficient mechanical stability for the solar module.
Abstract:
A solar module and a method for fabricating a solar module comprising a plurality of rear contact solar cells are described. Rear contact solar cells (1) are provided with a large size of e.g. 156×156 mm2. Soldering pad arrangements (13, 15) applied on emitter contacts (5) and base contacts (7) are provided with one or more soldering pads (9, 11) arranged linearly. The soldering pad arrangements (13, 15) are arranged asymmetrically with respect to a longitudinal axis (17). Each solar cell (1) is then separated into first and second cell portions (19, 21) along a line (23) perpendicular to the longitudinal axis (17). Due to such cell separation and the asymmetrical design of the soldering pad arrangements (13, 15), the first and second cell portions (19, 21) may then be arranged alternately along a line with each second cell portion (21) arranged in a 180°-orientation with respect to the first cell portions (19) and such that emitter soldering pad arrangements (13) of a first cell portion (19) are aligned with base soldering pad arrangements (15) of neighboring second cell portions (21), and vice versa. Simple linear ribbon-type connector strips (25) may be used for interconnecting the cell portions (19, 21) by soldering onto the underlying aligned emitter and base soldering pad arrangements (13, 15). The interconnection approach enables using standard ribbon-type connector strips (25) while reducing any bow as well as reducing series resistance losses.
Abstract:
A solar module and a method for fabricating a solar module comprising a plurality of rear contact solar cells are described. Rear contact solar cells (1) are provided with a large size of e.g. 156×156 mm2, Soldering pad arrangements (13, 15) applied on emitter contacts (5) and base contacts (7) are provided with one or more soldering pads (9, 11) arranged linearly. The soldering pad arrangements (13, 15) are arranged asymmetrically with respect to a longitudinal axis (17). Each solar cell (1) is then separated into first and second cell portions (19, 21) along a line (23) perpendicular to the longitudinal axis (17). Due to such cell separation and the asymmetrical design of the soldering pad arrangements (13, 15), the first and second cell portions (19, 21) may then be arranged alternately along a line with each second cell portion (21) arranged in a 180°-orientation with respect to the first cell portions (19) and such that emitter soldering pad arrangements (13) of a first cell portion (19) are aligned with base soldering pad arrangements (15) of neighboring second cell portions (21), and vice versa. Simple linear ribbon-type connector strips (25) may be used for interconnecting the cell portions (19, 21) by soldering onto the underlying aligned emitter and base soldering pad arrangements (13, 15). The interconnection approach enables using standard ribbon-type connector strips (25) while reducing any bow as well as reducing series resistance losses.
Abstract:
A solar cell assembly (200) is presented. The solar cell assembly includes one or more solar cell units (21 1) coupled in series. The solar cell unit includes a first solar cell series (221) and a second solar cell series (222) connected in parallel. The first and second solar cell series include a plurality of cells (202) connecting in series respectively. The solar cell assembly also includes a by-pass diode (201) coupled to each solar cell unit and shared between the first and second solar cell series in each solar cell unit.
Abstract:
A solar module and a method for fabricating a solar module comprising a plurality of rear contact solar cells are described. Rear contact solar cells (1) are provided with a large size of e.g. 156×156 mm2, Soldering pad arrangements (13, 15) applied on emitter contacts (5) and base contacts (7) are provided with one or more soldering pads (9, 11) arranged linearly. The soldering pad arrangements (13, 15) are arranged asymmetrically with respect to a longitudinal axis (17). Each solar cell (1) is then separated into first and second cell portions (19, 21) along a line (23) perpendicular to the longitudinal axis (17). Due to such cell separation and the asymmetrical design of the soldering pad arrangements (13, 15), the first and second cell portions (19, 21) may then be arranged alternately along a line with each second cell portion (21) arranged in a 180°-orientation with respect to the first cell portions (19) and such that emitter soldering pad arrangements (13) of a first cell portion (19) are aligned with base soldering pad arrangements (15) of neighboring second cell portions (21), and vice versa. Simple linear ribbon-type connector strips (25) may be used for interconnecting the cell portions (19, 21) by soldering onto the underlying aligned emitter and base soldering pad arrangements (13, 15). The interconnection approach enables using standard ribbon-type connector strips (25) while reducing any bow as well as reducing series resistance losses.
Abstract:
A solar module and a method for fabricating a solar module comprising a plurality of rear contact solar cells are described. Rear contact solar cells (1) are provided with a large size of e.g. 156×156 mm2. Soldering pad arrangements (13, 15) applied on emitter contacts (5) and base contacts (7) are provided with one or more soldering pads (9, 11) arranged linearly. The soldering pad arrangements (13, 15) are arranged asymmetrically with respect to a longitudinal axis (17). Each solar cell (1) is then separated into first and second cell portions (19, 21) along a line (23) perpendicular to the longitudinal axis (17). Due to such cell separation and the asymmetrical design of the soldering pad arrangements (13, 15), the first and second cell portions (19, 21) may then be arranged alternately along a line with each second cell portion (21) arranged in a 180°-orientation with respect to the first cell portions (19) and such that emitter soldering pad arrangements (13) of a first cell portion (19) are aligned with base soldering pad arrangements (15) of neighboring second cell portions (21), and vice versa. Simple linear ribbon-type connector strips (25) may be used for interconnecting the cell portions (19, 21) by soldering onto the underlying aligned emitter and base soldering pad arrangements (13, 15). The interconnection approach enables using standard ribbon-type connector strips (25) while reducing any bow as well as reducing series resistance losses.
Abstract:
A solar module and a method for fabricating a solar module comprising a plurality of rear contact solar cells are described. Rear contact solar cells (1) are provided with a large size of e.g. 156×156 mm2. Soldering pad arrangements (13, 15) applied on emitter contacts (5) and base contacts (7) are provided with one or more soldering pads (9, 11) arranged linearly. The soldering pad arrangements (13, 15) are arranged asymmetrically with respect to a longitudinal axis (17). Each solar cell (1) is then separated into first and second cell portions (19, 21) along a line (23) perpendicular to the longitudinal axis (17). Due to such cell separation and the asymmetrical design of the soldering pad arrangements (13, 15), the first and second cell portions (19, 21) may then be arranged alternately along a line with each second cell portion (21) arranged in a 180°-orientation with respect to the first cell portions (19) and such that emitter soldering pad arrangements (13) of a first cell portion (19) are aligned with base soldering pad arrangements (15) of neighboring second cell portions (21), and vice versa. Simple linear ribbon-type connector strips (25) may be used for interconnecting the cell portions (19, 21) by soldering onto the underlying aligned emitter and base soldering pad arrangements (13, 15). The interconnection approach enables using standard ribbon-type connector strips (25) while reducing any bow as well as reducing series resistance losses.