Abstract:
A self-propelled, self-steering floor cleaner is provided, including a cleaning device with at least one cleaning unit for cleaning a floor surface of a room having at least a section of an obstacle therein that is not in contact with the floor surface, a transmission unit for emitting radiation directed at the obstacle and the floor surface, a detection unit for detecting reflected radiation and providing a detection signal, a control unit coupled to the detection unit, and a chassis for movement on the floor surface including a drive unit coupled to the control unit, it being determinable from the detection signal whether a space and a cleanable floor surface section are present underneath the obstacle, the drive unit being actuatable to move the floor cleaner for cleaning the floor surface section, with at least one cleaning unit. The invention also relates to a method for cleaning a floor surface.
Abstract:
A method for controlling an autonomous mobile robot. According to one exemplary embodiment, the method comprises the storage and management of at least one map associated with an area of use for the robot and the navigation of the robot through the area of use for the robot, wherein the robot continuously determines its position on the map. The method further comprises the detection of a repositioning procedure, during which the robot carries out a movement that the robot itself cannot control. During this repositioning procedure, the robot detects information about its position and/or its state of motion with the aid of sensors and, based on the detected information, determines an estimated value for its position.
Abstract:
A method for controlling an autonomous, mobile robot which is designed to navigate independently in a robot deployment area, using sensors and a map. According to one embodiment, the method comprises detecting obstacles and calculating the position of detected obstacles based on measurement data received by the sensors, and controlling the robot to avoid a collision with a detected obstacle, the map comprising map data that represents at least one virtual blocked region which, during the control of the robot, is taken into account in the same way as an actual, detected obstacle.
Abstract:
An optical triangulation sensor for distance measurement is described herein. In accordance with one embodiment, the apparatus comprises a light source for the generation of structured light, an optical reception device, at least one attachment element and a carrier with a first groove on a lateral surface of the carrier, wherein the light source and/or optical reception device is at least partially arranged in the first groove and is held in place on the carrier by the attachment element.
Abstract:
In the following, a system having an autonomous mobile robot and a base station for the robot is described. In accordance with one example, the robot comprises a navigation module with a navigation sensor for detecting geometric features of objects in the environment of the robot. The base station has at least one geometric feature which can be detected by the robot by means of the navigation sensor. The robot includes a robot controller that is coupled with the navigation module, the robot controller being configured to identify and/or localize the base station and/or to determine a docking position of the robot based on the at least one geometric feature of the base station.
Abstract:
A method for controlling an autonomous mobile robot for carrying out a task in a local region of an area of application of the robot. According to one embodiment, the method comprises the following steps: positioning the robot in starting position within the area of application of the robot; detecting information relating to the surroundings of the robot by means of at least one sensor; selecting a region with a determined geometric basic shape; and automatically determining, based on the detected information relating to the surroundings, at least one of the two following parameters: size and position (also including the orientation/alignment) of the selected region.
Abstract:
A method for controlling an autonomous, mobile robot which is designed to navigate independently in a robot deployment area, using sensors and a map. According to one embodiment, the method comprises detecting obstacles and calculating the position of detected obstacles based on measurement data received by the sensors, and controlling the robot to avoid a collision with a detected obstacle, the map comprising map data that represents at least one virtual blocked region which, during the control of the robot, is taken into account in the same way as an actual, detected obstacle.
Abstract:
A self-propelled, self-steering floor cleaner is provided, including a cleaning device with at least one cleaning unit for cleaning a floor surface of a room having at least a section of an obstacle therein that is not in contact with the floor surface, a transmission unit for emitting radiation directed at the obstacle and the floor surface, a detection unit for detecting reflected radiation and providing a detection signal, a control unit coupled to the detection unit, and a chassis for movement on the floor surface including a drive unit coupled to the control unit, it being determinable from the detection signal whether a space and a cleanable floor surface section are present underneath the obstacle, the drive unit being actuatable to move the floor cleaner for cleaning the floor surface section, with at least one cleaning unit. The invention also relates to a method for cleaning a floor surface.
Abstract:
A method for controlling an autonomous mobile robot. According to one exemplary embodiment, the method comprises the storage and management of at least one map associated with an area of use for the robot and the navigation of the robot through the area of use for the robot, wherein the robot continuously determines its position on the map. The method further comprises the detection of a repositioning procedure, during which the robot carries out a movement that the robot itself cannot control. During this repositioning procedure, the robot detects information about its position and/or its state of motion with the aid of sensors and, based on the detected information, determines an estimated value for its position.
Abstract:
Methods for an autonomous mobile robot are described. According to an exemplary embodiment, one method comprises the detection of information regarding the structure of the environment around the robot in the robot deployment area by means of a first sensor unit of the robot and the creation of a map based on the detected information. The method also comprises the measurement of a direction and/or a quantity of at least one physical vector field variable for one or more poses of the robot by means of a second sensor unit and the determination, based on the measurement(s) carried out for one or more poses of the robot, of a preferred direction of the at least one physical vector field variable for the robot deployment area (or a portion thereof). Furthermore, corresponding robots and robot systems are described.