Abstract:
A connected-DRA array including: a plurality of DRAs each having at least one volume of non-gaseous dielectric material; each of the plurality of DRAs having a proximal end and a distal end, and an overall height, H, from the proximal end to the distal end; wherein each of the plurality of DRAs is physically connected to at least one other of the plurality of DRAs via a relatively thin connecting structure being relatively thin as compared to an overall outside dimension of one of the plurality of DRAs, each connecting structure having a cross sectional overall height, h, as observed in the elevation view of the connected-DRA array, that is less than the overall height, H, of a respective connected DRA and being formed of a thin sheet of the at least one volume of non-gaseous dielectric material; wherein the thin sheet extends over a substantial portion of the connected-DRA array as observed in a plan view of the connected-DRA array.
Abstract:
A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.
Abstract:
An electromagnetic device includes: an electromagnetically reflective structure having an electrically conductive structure and a plurality of electrically conductive electromagnetic reflectors that are integrally formed with or are in electrical communication with the electrically conductive structure; wherein the plurality of reflectors are disposed relative to each other in an ordered arrangement; and, wherein each reflector of the plurality of reflectors forms a wall that defines and at least partially circumscribes a recess having an electrically conductive base that forms part of or is in electrical communication with the electrically conductive structure.
Abstract:
A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.
Abstract:
In an embodiment, an electromagnetic device, comprises a substrate a substrate comprising a dielectric layer and a first conductive layer; at least one dielectric structure comprising at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having an average dielectric constant and an optional second dielectric portion that extends into an optional via. The at least one dielectric structure is bonded to the substrate by at least one of: a mechanical interlock between the second dielectric portion and the substrate due to the at least one interlocking slot comprising a retrograde surface; an intermediate layer located in between the dielectric structure and the substrate having a roughened surface; or an adhesive material located in between the dielectric structure and the substrate. A method of making the device can comprise injection molding a dielectric composition onto the substrate to form the dielectric substrate.
Abstract:
An electromagnetic device includes: an electromagnetically reflective structure having an electrically conductive structure and a plurality of electrically conductive electromagnetic reflectors that are integrally formed with or are in electrical communication with the electrically conductive structure; wherein the plurality of reflectors are disposed relative to each other in an ordered arrangement; and, wherein each reflector of the plurality of reflectors forms a wall that defines and at least partially circumscribes a recess having an electrically conductive base that forms part of or is in electrical communication with the electrically conductive structure.
Abstract:
In an embodiment, a magneto-dielectric substrate comprises a dielectric polymer matrix; and a plurality of hexaferrite particles dispersed in the polymer matrix in an amount and of a type effective to provide a magneto-dielectric substrate having a magnetic constant of greater than or equal to 2.5 from 0 to 500 MHz, or 3 to 8 from 0 to 500 MHz; a magnetic loss of less than or equal to 0.1 from 0 to 500 MHz, or 0.001 to 0.05 over 0 to 500 MHz; and a dielectric constant of 1.5 to 8 or 2.5 to 8 from 0 to 500 MHz.
Abstract:
In an aspect, a thermosettable composition comprises an imide extended compound and a reactive monomer that is free-radically crosslinkable with the reactive end groups of the imide extended compound to produce a crosslinked network. A thermoset composite can be derived from the thermosettable composition and a multilayer article can include the thermoset composite in the form of a layer. The article can be an antenna, a bond ply, a semiconductor substrate build-up/redistribution layer dielectric film, a circuit board, resin-coated-copper (RCC), or a flexible core.
Abstract:
An electromagnetic, EM, device, includes: a substrate having a dielectric layer and a first conductive layer at a first side of the substrate, the substrate having a via that extends at least partially through the substrate from the first side toward an opposing second side of the substrate; at least one dielectric structure having at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having a first average dielectric constant, the at least one dielectric structure further having a second dielectric portion that is contiguous with the first dielectric portion; wherein the second dielectric portion extends into the via of the substrate, the via having a mechanical interlock surface; and wherein the at least one dielectric structure includes a mechanical interlock between the second dielectric portion and the mechanical interlock surface of the via of the substrate.
Abstract:
A connected dielectric resonator antenna array (connected-DRA array) operational at an operating frequency and associated wavelength, includes: a plurality of dielectric resonator antennas (DRAs), each of the plurality of DRAs having at least one volume of non-gaseous dielectric material; wherein each of the plurality of DRAs is physically connected to at least one other of the plurality of DRAs via a relatively thin connecting structure, each connecting structure being relatively thin as compared to an overall outside dimension of one of the plurality of DRAs, each connecting structure having a cross sectional overall height that is less than an overall height of a respective connected DRA and being formed from at least one of the at least one volume of non-gaseous dielectric material, each connecting structure and the associated volume of the at least one volume of non-gaseous dielectric material forming a single monolithic portion of the connected-DRA array.