Abstract:
It is presented a heat managing device for a light source (100) which combines heat managing by means of a heat sink, heat pipes and forced convection, thereby achieving efficient cooling of high power lighting applications. The heat managing device comprises a heat spreading element (104) having an upper side arranged for thermally connecting to at least one light source (106). The light emitted from the light source is controlled by secondary optics (103). The heat managing device comprises a heat sink which is thermally connected to the heat spreader, and to a first set of heat pipes which is thermally connected to the heat spreader. At least a portion of the heat sink is arranged to encompass the secondary optics. The heat pipes are embedded in the heat sink. Further, a fan for providing forced air convection at the heat sink is comprised in the device. A corresponding lighting device is also presented.
Abstract:
The invention relates to an UV lamp (100) that may for example be used as a torch for crime inspection. The UV lamp (100) comprises a light source (50), e.g. an UV LED, and a reflector (30) which are designed such that a light spot comprising an inner region of a given minimal diameter D at an axial distance of about 8-D is produced which has an intensity variation of less than about 20%. The reflector (30) may preferably be a Compound Parabolic Concentrator (CPC) with a high aspect ratio. Moreover, the UV lamp (100) may comprise a luminescent indicator for making activity of the UV lamp visible to a user.
Abstract:
A micro system power supply (1) comprises a compartment (7), at least one ion sink void (51, 52) being separated from the compartment (7) by ion pervious separation means (61, 62), a first electrode (41) being arranged in the ion sink void, and a second electrode (42). Such a micro system power supply (1) allows to provide power for a micro system, such as, e.g., an implantable micro device, a MEMS, a bioMEMS, or the like, wherein the micro system power supply (1) can be comparably efficiently manufactured in a manner to be comparably environmentally friendly disposable.
Abstract:
A light-emitting diode (1) has a first electrode (3), a second electrode (4), a light-emitting layer (5) which comprises a matrix, and ions. A layer (6) of a cation receptor (CR) is positioned adjacent to the first electrode (3), has captured cations, and has generated immobilized cations (+). A layer (7) of an anion receptor (AR) is positioned adjacent to the second electrode (4), has captured anions, and has generated immobilized anions (−). The ion gradients provide for quick response in emission of light (L) when the diode (1) is exposed to a forward bias. A diode (1) is manufactured by first forming a laminate (2) of the above structure. The laminate (2) is exposed to a forward bias to make the ions become immobilized at respective sites (S1, S2) of the respective receptors (CR, AR).
Abstract:
To improve automation, especially in 2D gel electrophoresis of proteins, DNA etc., a separation device (1) has a physically activatable means for releasing surfactant, eg. SDS, into the gel fr SDS-PAGE. In one embodiment, surfactant-bound polymer is photolytically cleaved; in another, a barrier layer (30) is melted/destroyed to allow surfactant from reservoir (20) to reach the separation area (10). The barrier layer may comprise a novolac.
Abstract:
A display device comprises a light emitting picture element (120) and a contrast enhancing element (110). The contrast enhancing element comprises a plurality of wave guides (216) separated by interstitial regions (212) being formed as narrowing recesses. An interface between a wave guide (216) and an interstitial region (212) is provided with a reflective layer. The narrowing recesses form a dead end for incident ambient light which is efficiently absorbed by the contrast enhancing element. On the other hand, light emitted by the picture element (120) of the display device is transmitted through the wave guides (216). As a result, the display device has a relatively high contrast ratio, particularly under bright ambient light conditions.
Abstract:
A wearable electronic device such as a wrist watch (60) is supplied with conventional clock with two pointers (32,33). The device displays a parameter indicative of how “cool” the wearer has been over the past period as a function of time, using the time axis of one of the pointers (32,33). “Coolness” can be based on the measurement of related physiological parameters like heart-rate, body temperature, movement, skin resistance or muscle activity. “Coolness” of a person is understood as being the ability to cope with stress. Therefore, the stability of physiological parameters can be used to derive a signal for the subjective trait called “coolness”. All physiological parameters can be measured by sensors (10) in the watch (60) or in the strap (50). The invention is used as a gadget for self expression and emotional feedback.
Abstract:
A filter window for EUV lithography includes a pellicle, and a wire structure for supporting the pellicle. The pellicle includes a first layer that includes at least one of AlN, Ru, Ir, Au, SiN, Rh. The pellicle has a very low EUV absorption in combination with a minimal oxidation rate. The thickness of the pellicle may be between 30 nm and 100 nm. It can be easily checked that absorption of EUV radiation of such a thin pellicle is equal to known filter windows, i.e. about 50% at a wavelength of 13.5 nm wavelength, but the oxidation of the pellicle according to the invention is much smaller. The filter window can for example be used to separate a Projection Optics box and a wafer compartment of the apparatus or to shield a reticle from particle contamination.
Abstract:
The invention relates to a substrate material for analyzing one or more fluid samples for the presence, amount or identity of one or more analytes in the samples, whereby the substrate material is adapted in that way that a flow of the sample or parts thereof in and/or with the substrate material is influenced and/or caused by phase transitions, preferably temperature-inducible phase transitions, in selected areas of the substrate material.
Abstract:
An optical head (10) using a variable optical component (10), which component comprises bendable nano-elements (3) that can be switched between a bent and non-bent state by means of a driver-field applied between electrodes (1, 2). In the bent state the nano-elements absorb radiation and therefore adapt the radiation intensity distribution of the radiation beam passing the component.