Abstract:
The liquid spray includes an oscillator for producing a fan spray with liquid droplets of uniform size. The oscillator is constituted by a power nozzle, a pair of side walls forming a pair of vortice spaces offset from the power nozzle, a pair of inwardly extending protuberances or deflectors downstream of which are a pair of inlets to passages leading to exits adjacent the power nozzle, and an outlet throat or aperture having a pair of short wall surfaces defining an exit throat of any value selected from about 30.degree. to about 160.degree. so that the fan angle can be selected to be from about 30.degree. to 160.degree.. This structure results in an oscillator which has a relatively low threshold of pressure at which oscillations are initiated and, most importantly, the liquid is issued in a much more uniform fan pattern than heretofore possible. In a preferred embodiment the liquid is a windshield washer fluid and the oscillator is incorporated in a nozzle for an automobile windshield washer assembly for issuing a fan spray of washer fluid onto the windshield.
Abstract:
A pair of liquid flow passages are formed in a chamber and liquid flow through the passages is alternately blocked and unblocked by alternately pulsating vortices which causes alternate pulsations of fluid flow through the pairs of liquid flow passages.
Abstract:
A fluid flow control element is constituted by a fluidic amplifier having an interaction region shaped to provide side walls leading to a pair of fluid flow outlets. The fluid flow inlet for the fluidic amplifier has positioned adjacent thereto at least one control fluid passageway, and the flow of fluid to the outlet passages is controlled by at least one pivoted valve or flap element pivoted between two positions for controlling flow fluid from the fluid inlet to a selected one of a pair of fluid flow passageways or outlets. In the preferred embodiment the fluid flow inlet and outlet and the interaction chamber are such that the fluid pressure in the chamber is always above any pressure in the load passageways and fluid from the fluid flow inlet flows out from the chamber through the control passage. The pivoted valve or flap element, in the preferred embodiment is flat so that it is balanced relative to gravity as well as aerodynamically, so that it will not change position due to back pressures as when outlet passages or receivers are partially or completely blocked and does not cause any torque on the valve element about said pivot and hence will remain in the control position despite severe back loading. The invention is described in relation to a low pressure system, such as automobile air flow systems wherein a number of the unique aspects of the invention are utilized.
Abstract:
A fluid dispersal device utilizes the Karman Vortex street phenomenon to cyclically oscillate a fluid stream before issuing the stream in a desired flow pattern. A chamber includes an inlet and outlet with an obstacle or island disposed therebetween to establish the vortex street. The vortex street causes the stream to be cyclically swept transversely of its flow direction in a manner largely determined by the size and shape of the obstacle relative to the inlet and outlet, the spacing between the obstacle and the outlet, the outlet area, and the Reynolds number of the stream. Depending on these factors, the flow pattern of the stream issued from the outlet may be either: a swept jet, residing wholly in the plane of the device and which breaks up into droplets solely as a result of the cyclic sweeping, the resulting spray pattern forming a line when impinging on a target; or a swept sheet, the sheet being normal to the plane of the device and being swept in the plane of the device, the resulting pattern containing smaller droplets than the swept jet pattern and covering a two-dimensional area when impinging upon a target.
Abstract:
A full coverage area spray device has an oscillation chamber. Chamber end plates have a diameter D and the distance between the inlet and outlet apertures is L and ratio L/D determines the spray pattern and is adapted to support a basic toroidal flow pattern that remains captive within the confines of the oscillation chamber. The toroid spins about its cross-sectional axis and being supplied energy from the jet of liquid issued into the oscillation chamber. The toroidal flow pattern has diametrically opposed cross-sections which alternate in size to cause the jet to move in radial paths and also in tangential direction and thereby choose a different radial path at each sweep, whereby there is a random sweeping of the jet issuing from the outlet aperture over the area.
Abstract:
A cooling tower having a housing for forming droplets of hot water in an air stream which causes a small portion of the hot water issuing from said oscillating spray nozzles to evaporate and remove heat from the remaining water thereby cooling said remaining water. A sump collects the remaining water and returns the remaining water to the heat source. The low pressure fluidic oscillating nozzles: (a) form large sized droplets of hot water uniformly over a large area, (b) reduce the quantity of droplets of hot water that are less than 2 mm diameter, (c) issue a spray pattern that reduces aerodynamic interference with air flow from said air blower, and (d) reduce sediments getting into the spraying of said hot water. In a preferred embodiment, the fluidic oscillator is a cusped island oscillator having an outlet with diverging sidewalls.
Abstract:
A gas burner comprising a gas manifold feeding an array of fluidic oscillators. Each fluidic oscillator has a power nozzle connected to the gas manifold and an outlet for issuing a sweeping jet of gas to ambient. Each fluidic oscillator is spaced a predetermined distance from its neighboring fluidic oscillators and a baffle plate controls air flow to the sweeping jet of gas from each fluidic oscillator.
Abstract:
Control of temperature of air efflux from an air outlet is by control of the oscillation of a fluidic oscillator. Directionality of efflux is by control of nibs at the outlet.
Abstract:
An air discharge nozzle and method for vehicles having a grill (21') which has a high degree of visual opacity to enhance design aesthetics, low impedance to air flow so that the face velocity remains high, and which does not significantly affect directionality of the air as imparted to the air stream by an upstream control mechanism. The grill (21') is comprised of a monolayer of polygonal cells in an array of cells, each cell being bounded by planar walls having a depth "L" interstitial thickness "T" and a diameter or major dimension "D", wherein the interstitial depth L is short enough such that the planar walls do not act as vanes to significantly affect directionality of the air, the interstitial thickness T has a value such that the impedance to air flow is low, and the length to diameter ratio L/D is no greater than about 0.7 and no less than about 0.3, such that the relative visual opacity of the grill when viewed from any angle is high. The open cell area Ao must be at least about 76% of the available (total) area to obtain an acceptable 1800 ft/min face velocity at a blower pressure of 0.24 inches H.sub.2 O. The upstream directionality control mechanism includes a disc intruder (224).The intruder member has axially projecting control shaft (35') which carries a spherical member (37') frictionally received in a spherical socket (38') such that the control shaft can easily be manually manipulated.
Abstract:
A fluidic oscillator which is free of feedback passages has an oscillation chamber having a length greater than its width, a pair of mutually facing and complementary-shaped sidewalls, planar top and bottom walls, and first and second end walls. An input power nozzle is formed in said first end wall having a width W and a depth D, for issuing a stream of fluid into the oscillation chamber, and form alternately pulsating, cavitation-free vortices in said oscillation chamber on each side of the stream. An interconnect passage or channel proximate the downstream end wall enlarges the sweep angle and improves periodicity of the oscillations. The outlet wall is hingedly connected to a chamber wall and the chamber is such that it can be molded with the outlet wall hingedly connected thereto in one molding and forms one side of the interconnect passage or channel.