Abstract:
One object of the present invention is to provide an electrochromic device having improved insulating film structure to reduce electrical leakage. The improved structure includes a lower conductive layer, upper conductive layer, an electrochromic electrode layer, a counter electrode layer, and at least one ion-conductor layer sandwiched between the electrochromic electrode layer and the counter electrode layer. The lower conductive layer and the electrochromic electrode layer are scribed and the gap formed from the scribing is filled with the layers formed above the electrochromic electrode layer. In some aspects, the ion-conductor layer is also scribed with the lower conductor and electrochromic electrode layers and the gap formed from the scribing is filled with the layers formed above the ion-conductor layer. In further aspects, the insulating film may include one or more buffer layers formed above an ion-conductor layer, further separating the upper conductive layer from the lower conductive layer.
Abstract:
An electrochemical device and method of forming said device is disclosed. The method can include providing a substrate and stack overlying the substrate. The stack can include a first transparent conductive layer over the substrate, a cathodic electrochemical layer over the first transparent conductive layer, an anodic electrochemical layer over the electrochromic layer, and a second transparent conductive layer overlying the anodic electrochemical layer. The method can include depositing an insulating layer over the stack and determining a first pattern for the second transparent conductive layer. The first pattern can include a first region and a second region. The first region and the second region can be the same material. The method can include patterning the first region of the second transparent conductive layer without removing the material from the first region. The first region can have a first resistivity and the second region can have a second resistivity.
Abstract:
An electrochromic device is structured to restrict moisture permeation between an electrochromic stack in the device and an external environment. The electrochromic device includes conductive layers and one or more encapsulation layers, where the encapsulation layers and conductive layers collectively isolate the electrochromic stack from the ambient environment. The encapsulation layers resist moisture permeation, and at least the outer portions of the conductive layers resist moisture permeation. The moisture-resistant electrochromic device can be fabricated based at least in part upon selective removal of one or more outer portions of at least the EC stack, so that at least the encapsulation layer extends over one or more edge portions of the EC stack to isolate the edge portions of the EC stack from the ambient environment. The encapsulation layer can include one or more of an anti-reflective layer, infrared cut-off filter, etc.
Abstract:
The present disclosure describes various processes of forming an electrochromic stack using at most one metallic lithium deposition station. In some aspects, a process may include depositing metallic lithium only within an electrochromic counter-electrode of an electrochromic stack. In some aspects, a process may include using a lithium-containing ceramic counter-electrode target to form an electrochromic counter-electrode and depositing metallic lithium only within or above an electrochromic electrode of the electrochromic stack. In some embodiments, a process may include using a lithium-containing ceramic electrode target, and optionally additionally depositing metallic lithium to add mobile lithium to the electrochromic stack. In some embodiments, a process may include using a single metallic lithium deposition station to deposit metallic lithium between an ion-conducting layer and an electrochromic electrode of the electrochromic stack.
Abstract:
An electrochromic device and method of forming the same is disclosed. The electrochromic device can include a first transparent conductive layer, an electrochromic layer, an electrolyte layer, a counter electrode layer, a second transparent conductive layer, and an adhesion layer between the counter electrode layer and the second transparent conductive layer, where the electrochromic device can undergo at least 2,000 cycles in a Nylon brush test before type 2 defects form. The method can include depositing an electrochromic layer over a first transparent conductive layer, depositing an electrolyte layer, depositing a lithium layer, depositing a counter electrode layer over the lithium layer, depositing a second transparent conductive layer, and heating the layers to form an electrochromic stack, where the lithium layer is combined with the counter electrode layer.
Abstract:
An electrochemical device is disclosed. The electrochemical device includes a first transparent conductive layer, an electrochromic layer overlying the first transparent conductive layer, a counter electrode layer overlying the electrochromic layer, a second transparent conductive layer, and a switching speed parameter of not greater than 0.68 s/mm at 23° C.
Abstract:
An insulated glazing unit is provided. The unit includes a spacer frame separating a pair of substrates. The spacer frame has a length and a width transverse to the length. The unit further includes a conductive element passing through the width of the spacer frame. The unit further includes a first conductive component within the spacer frame. The first conductive component is in electrical communication with the conductive element. The conductive element is adapted for electrical communication with a second conductive component on a side of the width of the spacer frame opposite the first conductive component.
Abstract:
Several of the films that comprise various energy producing or control devices, for example, electrochromic devices, lithium batteries, and photovoltaic cells, are sensitive to moisture in some way. They may be especially vulnerable to moisture at particular stages during their fabrication. It may also be highly desirable during fabrication to be able to wash particulates from the surface. The particulates may be generated some aspect of the fabrication process, or they may arise from the environment in which the fabrication takes place. This invention shows ways to remove said particles from the surface without incurring the damage associated with typical washing processes, resulting in higher manufacturing yields and better device performance.
Abstract:
A triple glazing unit is disclosed. The triple glazing unit can include a first pane, a second pane, a third pane between the first pane and the second pane, an electrochemical device coupled to the third pane and between the third pane and the second pane, a first cavity between the first pane and the third pane, and a second cavity between the second pane and the third pane, wherein a distance between the first pane and the third pane is greater than a distance between the second pane and the third pane.
Abstract:
A method of manufacturing an electrochromic (EC) device is provided. The method includes receiving a substrate at a first facility. The substrate is coated with one or more layers of a plurality of layers. The substrate is patterned at the first facility to form a patterned substrate. Patterning the substrate includes identifying one or more areas for forming EC devices. The one or more areas of the patterned substrate are then electrically tested at the first facility. After electrically testing the patterned substrate, the patterned substrate is transported from the first facility to a second facility. At the second facility, after receiving the patterned substrate from the first facility, the one or more areas are cut from the patterned substrate to provide the EC device(s).