Abstract:
A method for forming a hole plug in a laminate structure is provided. A laminate structure, is formed, including at least a dielectric layer and a first conductive foil on a first side of the dielectric layer. An unpierced or blind hole is formed in the laminate structure extending toward the first conductive foil from a second side of the dielectric layer and at least partially through the dielectric layer, the hole having a hole depth to hole diameter aspect ratio of less than twenty (20) to one (1). In yet another example, the hole aspect ratio may be less than one (1) to one (1). Via fill ink may then be deposited in the hole. The via fill ink is then dried and/or cured to form a hole plug.
Abstract:
A method for making an ultra-thin dielectric printed circuit board (PCB) is provided. A first side of a first conductive layer is removably coupled to a disposable base. A first ultra-thin dielectric layer and a second conductive layer are laminated to a second side of the first conductive layer, where the first ultra-thin dielectric layer is positioned between the first and second conductive layers, and the first ultra-thin dielectric layer is thinner than at least one of the first conductive layer and the second conductive layer. The second conductive layer may then be patterned to form electrical paths. The patterned second conductive layer is then filled with a dielectric filler. One or more conductive layers and one or more ultra-thin dielectric layers may then be coupled to the second conductive layer. The disposable base may then be detached from the first conductive layer.
Abstract:
A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
A method for forming a hole plug in a laminate structure is provided. A laminate structure, is formed, including at least a dielectric layer and a first conductive foil on a first side of the dielectric layer. An unpierced or blind hole is formed in the laminate structure extending toward the first conductive foil from a second side of the dielectric layer and at least partially through the dielectric layer, the hole having a hole depth to hole diameter aspect ratio of less than twenty (20) to one (1). In yet another example, the hole aspect ratio may be less than one (1) to one (1). Via fill ink may then be deposited in the hole. The via fill ink is then dried and/or cured to form a hole plug.
Abstract:
A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
A core or sub-composite structure is provided including a dielectric layer between a first conductive film and a second conductive film. The first conductive film may include a first peelable/removable cover layer formed on or coupled to a first conductive layer. The second conductive film may include a second peelable/removable cover layer formed on or coupled to a second conductive layer.
Abstract:
A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
A method of making printed circuit board vias using a double drilling and plating method is disclosed. A first hole is drilled in a core, the first hole having a first diameter. The first hole is filled and/or plated with an electrically conductive material. A circuit pattern may be formed on one or two conductive layers of the core. A multilayer structure may then be formed including a plurality of cores that also include pre-drilled and plated via holes, wherein at least some of the pre-drilled and plated via holes are aligned with the first hole. A second hole is then drilled within the first hole and the aligned pre-drilled and plated holes, the second hole having a second diameter where the second diameter is smaller than the first diameter. A conductive material is then plated to an inner surface of the second hole.
Abstract:
A core or sub-composite structure is provided including a dielectric layer between a first conductive film and a second conductive film. The first conductive film may include a first peelable/removable cover layer formed on or coupled to a first conductive layer. The second conductive film may include a second peelable/removable cover layer formed on or coupled to a second conductive layer.
Abstract:
A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.