Abstract:
A system includes a primary Printed Circuit Board (PCB) and a heat transfer device that is attached to the primary PCB. The primary PCB includes a heat generating device and a thermal conductive inlay attached to the heat generating device. The heat transfer device includes a secondary PCB that is thermally coupled to the primary PCB, and a heat dissipation block. The heat dissipation block has a first side attached to the thermal conductive inlay of the primary PCB and a second side attached to the secondary PCB.
Abstract:
An example implementation may involve a robot foot having a bottom surface and an edge portion extending around at least a portion of a perimeter of the foot, where the edge portion meets the bottom surface at the perimeter, where the edge portion surrounds a volume extending from the bottom surface of the foot to a top surface of the edge portion, and where the edge portion of the foot is composed of a first material. The foot may also include an interior portion located adjacent to the edge portion, where the interior portion of the foot fills the volume, and where the interior portion is composed of a second material that is more compliant than the first material.
Abstract:
Example embodiments relate to a robotic device with at least two legs. Each leg includes a foot including a first sole and a second sole perpendicular to the first sole. Each leg additionally includes an ankle joint configured to rotate the foot from a first position in which the first sole is contacting a ground surface to a second position in which the second sole is contacting the ground surface. The robotic device includes a control system. When the foot of a given leg of the at least two legs is in the first position, the control system may determine to cause the foot of the given leg to switch from the first position to the second position, and may cause the ankle joint of the given leg to rotate the foot of the given leg from the first position to the second position.
Abstract:
A water-cooled housing includes a tubular passage with partition walls erected in the direction of the central axis at an angular interval on a cylindrical inner wall to form outward and inward passages extending parallel to each other along the central axis between the partition walls and the outer peripheral surface of a motor, a first cover which closes a first opening of the tubular passage while having returning passages that connect inward passages to next outward passages, a second cover which closes a second opening of the tubular passage section while having returning passages that connect outward passages to next inward passages, a water supply on the first cover section and connected to the entrance of a first outward passage, and a water drain connected to the outlet of the last inward passage of the first cover or the outlet of the last outward passage of the second cover.
Abstract:
To suppress a decline in the control accuracy of an applied voltage associated with an increase in quantum noise, and to increase the control accuracy of a motor speed. When generating a driving voltage signal supplied to a motor from a driving command signal, a motor-driving voltage control device reduces the gradation level and performs noise-shaping modulation before performing PWM modulation. Reducing the gradation level allows the degree of gradation of the driving voltage signal to be within the resolution range of the PWM modulation, and thus PWM modulation can be performed even when the driving voltage signal has a high frequency. Noise-shaping modulation reduces the level of quantum noise near the low frequency range by causing the quantum noise due to digitization, included in the driving voltage signal, to be biased toward the high frequency range side. Of modulation signals with the reduced-gradation level, the components near the high frequency band are cut, while the components near the low frequency range are used to suppress quantum noise and control the driving voltage applied to the motor with a high accuracy.