Abstract:
A read/write head has a set of components that at least include: at least one clearance actuator; at least one read transducer configured to read from a magnetic recording medium; and at least one write transducer configured to write to the magnetic recording medium. A switch network is coupled to the set of components and configured to, in response to a control signal, couple a selected sub-combination of the components to a common set of signal lines. The coupling of the selected sub-combination facilitates operation in a selected mode of the read/write head.
Abstract:
A heat generating component of a slider is energized at a predetermined frequency. The heat generating component changes a spacing between a medium and the slider. A temperature response proximate a media-facing surface of the slider is measured while the heating element is energized. Based on the measured temperature response, a determination is made as to whether the media-facing surface is contaminated. In response to determining that the media-facing surface is contaminated, remedial action is taken.
Abstract:
A transducing head may be connected to a controller and positioned proximal a data storage medium. The controller can be connected to a wear level identification circuit and configured to identify a first data region of the data storage medium having a first wear level and a second data region of the data storage medium having a second wear level. The first and second wear levels can respectively correspond to different amounts of component degradation of the data storage device.
Abstract:
At least one laser input current is applied to a laser in a heat assisted magnetic recording device. Laser output power of the laser is measured at the at least one applied laser current. A relationship is characterized amongst temperature, applied laser input current and laser output power. Laser current is set to an optimal laser current as determined at manufacturing. A metric of recording performance is measured to determine if the relationship is acceptable.
Abstract:
An incremental signal is defined that includes at least one of a duration and a peak voltage that is less than a respective minimum programming time or minimum programming voltage step of a resistive memory element. A characterization procedure is repeatedly performed that at least involves: applying a signal to the memory element, the signal being incremented by the incremental signal during each subsequent application; measuring a first resistance of the memory element in response to the signal; and c) measuring a second resistance of the memory element after a time period has elapsed from the measurement of the first resistance with no programming signal applied. In response to the first and second resistance measurements of the characterization procedure, a characterization parameter of the memory element is formed.
Abstract:
Data is written to cells of a resistance-based, non-volatile memory. An activity metric is tracked since the writing of the data to the cells. In response to the activity metric satisfying a threshold, a bias signal is applied to the cells to reverse a resistance shift of the cells.
Abstract:
In one implementation, a method and apparatus is provided for determining an active fly height setting for a transducer head from samples collected from a proximity sensor during less than a single revolution of a disc. Implementations of the method and system use adaptive discrete wavelet transform parameters generated from the collected samples to determine an active fly height setting for a transducer head.
Abstract:
A data storage device receives a write data command and data. The data is stored in a buffer of the data storage device. The data storage device issues a command complete status indication. After the command complete status indication is issued, the data are stored in a primary memory of the data storage device. The primary memory comprises a first type of non-volatile memory and the buffer comprises a second type of non-volatile memory that is different from the first type of non-volatile memory.
Abstract:
A data storage device may generally be constructed and operated with at least one variable resistance memory cell having a first logic state threshold that is replaced with a second logic state threshold by a controller. The first and second logic states respectively corresponding to a predicted resistance shift that is based upon an operating temperature profile.
Abstract:
Apparatus and method for managing data in a non-volatile memory (NVM) having an array of ferroelectric memory cells (FMEs). A data set received from an external client device is programmed to a group of the FMEs at a target location in the NVM using a selected profile. The selected profile provides different program characteristics, such as applied voltage magnitude and pulse duration, to achieve desired levels of power used during the program operation, endurance of the data set, and latency effects associated with a subsequent read operation to retrieve the data set. The profile may be selected from among a plurality of profiles for different operational conditions. The ferroelectric NVM may form a portion of a solid-state drive (SSD) storage device. Different types of FMEs may be utilized including ferroelectric tunneling junctions (FTJs), ferroelectric random access memory (FeRAM), and ferroelectric field effect transistors (FeFETs).