Abstract:
An ultrasonic device includes a base, a plurality of ultrasonic transducer elements, and a reinforcing body. The base defines a plurality of openings arranged in an array form. The ultrasonic transducer elements are arranged respectively corresponding to the openings with a plurality of vibration films being respectively provided for the ultrasonic transducer elements. The reinforcing body is fixed to the base in an area between adjacent ones of the vibration films when viewed in a plan view along a thickness direction of the base. The reinforcing body has Young's modulus greater than Young's modulus of the base.
Abstract:
An ultrasonic transducer device includes a base, a first electrode film, a piezoelectric film, a second electrode film and a first conductive film. The base has a plurality of vibrating film portions arranged in an array pattern. The first electrode film is disposed on each of the vibrating film portions. The piezoelectric film is disposed on the first electrode film. The second electrode film is disposed on the piezoelectric film. The first conductive film is connected to the first electrode film. The first conductive film has a film thickness larger than a film thickness of the first electrode film.
Abstract:
An ultrasonic transducer device includes a base, a plurality of piezoelectric elements, a conductive body and an insulating film. The base has a plurality of vibrating film portions arranged in an array pattern. The piezoelectric elements are respectively disposed on the vibrating film portions. The conductive body is disposed on the base, and arranged inside and outside of an area corresponding to each of the vibrating film portions in a plan view as viewed along a thickness direction of the base. The insulating film is disposed on the conductive body only at outside of the area corresponding to each of the vibrating film portions in the plan view.
Abstract:
An ultrasonic transducer device includes an ultrasonic transducer element array, a first signal terminal and a second signal terminal. The ultrasonic transducer element array has a 1st element group to a kth element group (where k is a natural number such that k≧2). The first signal terminal is connected with a control section configured to perform at least one of receiving and transmitting of signals. The second signal terminal is connected with the first signal terminal via the ultrasonic transducer element array. Each of the 1st element group to the kth element group includes a plurality of ultrasonic transducer elements electrically connected in parallel. The 1st element group to the kth element group are electrically connected in series between the first signal terminal and the second signal terminal.
Abstract:
A mounting structure includes: a first substrate that has a first surface on which a functional element is provided; a wiring portion that is provided at a position, which is different from a position of the functional element on the first surface, and is conductively connected to the functional element; a second substrate that has a second surface that is opposite to the first surface; and a conduction portion that is provided on the second surface, is connected to the wiring portion, and is conductively connected the functional element. The shortest distance between the functional element and the second substrate is longer than the longest distance between the second substrate and a position where the wiring portion is connected to the conduction portion.
Abstract:
A mounting structure includes a first substrate which has a first surface on which a functional element is provided, a second substrate that has a second surface facing the first surface, a wiring portion that is provided at a position which is different from a position of the functional element on the first surface, has a third surface facing the second surface, and is electrically connected to the functional element, and a conduction portion that is provided on the second surface, protrudes toward the first surface, and is connected to the third surface so as to be electrically connected to the functional element, in which an area of the third surface is larger than an area of a first end section of the wiring portion on the first substrate side in a plan view which is viewed from a thickness direction of the first substrate and the second substrate.
Abstract:
An ultrasonic device includes a plurality of ultrasonic element groups each including at least one transmitting element adapted to transmit an ultrasonic wave and at least one receiving element adapted to receive an ultrasonic wave, and arranged along an X direction, and in each of the ultrasonic element groups, a centroid position of the receiving area, in which the receiving element included in the ultrasonic element group is disposed, overlaps a transmitting area, in which the transmitting element included in the ultrasonic element group is disposed, in a projection view along a Y direction.
Abstract:
An ultrasonic device includes a plurality of ultrasonic wave transmitting sections adapted to transmit an ultrasonic wave as a fundamental wave, and a plurality of ultrasonic wave receiving sections capable of receiving a second-order harmonic wave with respect to the fundamental wave, the plurality of ultrasonic wave transmitting sections and the plurality of ultrasonic wave receiving sections are arranged along an X direction, the plurality of ultrasonic wave receiving sections are arranged at first intervals corresponding to the order of the second-order harmonic wave, the N ultrasonic wave transmitting sections constitute a single transmission channel, and are wired with each other, and the transmission channels are arranged at second intervals each twice as long as the first interval.
Abstract:
An ultrasonic sensor includes a vibration plate, a first electrode, a piezoelectric body, and a second electrode. The first electrode is laminated on the vibration plate, that has a length along a surface of the vibration plate in a first direction, and that has a width Wbe along the surface of the vibration plate in a second direction that is orthogonal to the first direction. The width Wbe is not more than the length. The piezoelectric body is laminated on the first electrode and has a width Wpz in the second direction. The second electrode is laminated on the piezoelectric body. A ratio Wbe/Wpz between the width Wbe of the first electrode and the width Wpz of the piezoelectric body is not less than 0.1 and not more than 0.8.
Abstract:
A mounting structure includes: a first substrate that has a first surface on which a functional element is provided; a wiring portion that is provided at a position, which is different from a position of the functional element on the first surface, and is conductively connected to the functional element; a second substrate that has a second surface that is opposite to the first surface; and a conduction portion that is provided on the second surface, is connected to the wiring portion, and is conductively connected the functional element. The shortest distance between the functional element and the second substrate is longer than the longest distance between the second substrate and a position where the wiring portion is connected to the conduction portion.