Abstract:
An acid-generating fluid includes a thermally activated strong acid precursor. The thermally activated strong acid precursor can include a component selected from aldehydes, ketones, and combinations thereof, in combination with a precursor of a compound adapted to react to liberate sulfur dioxide; or it can include sulfur dioxide in combination with a precursor of a compound adapted to react to liberate a component selected from aldehydes, ketones, and combinations thereof.
Abstract:
Furfural is produced from biomass material containing pentosan, in high yields, in a production process comprising treating the biomass with a solution containing at least one α-hydroxysulfonic acid thereby hydrolyzing the biomass to produce a product stream containing at least one C5-carbohydrate compound in monomeric and/or oligomeric form, and dehydrating the C5-carbohydrate compound in the presence of a heterogeneous solid acid catalyst, in a biphasic reaction medium comprising an aqueous phase and a water-immiscible organic phase, at a temperature in the range of from about 100° C. to about 250° C. to produce a dehydration product stream containing furfural. An aqueous stream is separated from the dehydration product, which can be optionally recycled to the hydrolysis step.
Abstract:
Since biomass is always accompanied by caustic inorganic materials, we have found that the formation of the anion salt of α-hydroxysulfonic acid represent the largest “loss” of the α-hydroxysulfonic acid in the potential reversible acid pretreatment process. By titrating the α-hydroxysulfonic acid salt with strong mineral acid and then reverting the alfa-hydroxysulfonic acid as its primary components, the acid components can be recovered substantially quantitatively.
Abstract:
A method of producing fatty acid esters in situ from microbial biomass such as algae is provided by treating microbial biomass with a solution containing an alcohol and at least one α-hydroxysulfonic acid. Fatty acid ester can be directly recovered from the treated microbial biomass. The α-hydroxysulfonic acid can be easily removed from the treated microbial biomass and recycled.
Abstract:
Fermentable sugar useful for the production of biofuels can be produced from biomass by contacting the biomass with a solution containing at least one α-hydroxysulfonic acid. The α-hydroxysulfonic acid can be easily removed from the product and recycled.
Abstract:
The present invention is directed to a method which includes the steps of: contacting an oil sand with a suitable solvent to generate a solvated oil sand slurry; separating solvent-diluted bitumen from the solvated oil sand slurry to generate (a) a solvent-diluted bitumen and (b) a slurry with increased solids concentration; filtering the slurry with increased solids concentration; dropping the solids into a pressure reduction vessel wherein the pressure in the pressure reduction vessel is a pressure below a vapor pressure of the solvent; and drying the solids removed from the pressure reduction vessel to produce solids having dry tailings. The method of the present invention may be used to produce a low ash bitumen product and dry tailings from oil sands.
Abstract:
A method of obtaining lipids from microbial biomass such as algae is provided by treating microbial biomass with a solution containing at least one α-hydroxysulfonic acid to extract and recover liposoluble components. The α-hydroxysulfonic acid can be easily removed from the product containing liposoluble compoenents and recycled.