Abstract:
Provided are an oxygen reduction catalyst having a high electrode potential under a fuel cell operating environment, an electrode containing the oxygen reduction catalyst, a membrane electrode assembly in which a cathode is the electrode, and a fuel cell including the membrane electrode assembly. The oxygen reduction catalyst used here contains cobalt, sulfur, and oxygen as elements, has a CoS hexagonal structure in powder X-ray diffractometry, and having an S—Co/S—O peak area ratio of 2.1 to 8.9 in an S2p spectrum in X-ray photoelectron spectroscopic analysis.
Abstract:
An object of the present invention is to provide a fuel cell electrode catalyst with which high durability and a high maximum output density are obtained even when a fuel cell is continuously operated for long time; a method for producing the fuel cell electrode catalyst; a fuel cell in which the catalyst is used; and the like. A method for producing a fuel cell electrode catalyst is provided, the method including: a step of preparing a catalyst precursor comprising each atom of a metal element, carbon, nitrogen, and oxygen, and comprising copper as the metal element; and a contact step of bringing the catalyst precursor and an acid solution into contact with each other to obtain a catalyst.