Abstract:
The disclosure describes an energy supply device for an electrolysis unit and an electrolysis installation comprising the energy supply device and an electrolysis unit connected thereto.
Abstract:
The application describes a method for operating an electrolyzer and a fuel cell which, in parallel with one another, are connected to a device-side converter connection of a common bidirectional converter, on
Abstract:
The disclosure relates to a platform stack for the space-saving configuration of an energy conversion installation, comprising at least two platforms stacked one over another to form the platform stack, wherein each of the platform is configured to position a skid with a respective converter unit of the energy conversion installation such that they are stacked one on top of the other on via the two platforms. The platforms each include a frame structure having a storage surface for the skid, and have alignment elements on a first side and support posts on a second side of the frame structure, opposite the first side.
Abstract:
A method and related apparatus for extending a DC voltage range of a rectifier circuit for the supply, from an AC grid, of a DC load which is connected to a DC rectifier output of the rectifier circuit, wherein an AC rectifier input of the rectifier circuit is connected via a grid connection point to the AC grid, wherein the rectifier circuit includes an AC/DC converter having an AC input and a DC output, wherein the AC/DC converter includes a converter circuit having semiconductor switches and freewheeling diodes connected in an antiparallel arrangement thereto, wherein an inductance is connected between the AC input of the AC/DC converter and the grid connection point. The method includes setting a desired DC operating voltage UDOC,soll on the DC output of the AC/DC converter or on the DC rectifier output, or both, by an actuation of semiconductor switches of the AC/DC converter, wherein, when the desired DC operating voltage UDC,soll lies below a value of an amplitude Û4 of an alternating voltage on the AC input of the AC/DC converter, the semiconductor switches of the AC/DC converter are actuated for an exchange of reactive power Q1(t) with the AC grid, which has a voltage-lowering effect upon the amplitude Û4 of the AC voltage at the AC input of the AC/DC converter, such that the amplitude Û4 approaches the desired DC operating voltage UDC,soll, and wherein the exchange of the reactive power Q1(t) with the AC grid is executed during or shortly before an electrical connection or an electrical isolation of the DC load to or from the rectifier circuit.
Abstract:
A converter includes an input configured to be connected to a DC source, at least one transducer module coupled to the input, and comprising a first, a second and a third bridge arm, wherein each of the bridge arms respectively has a phase output, and a common DC link circuit coupled to the input and the bridge arms. The first and second bridge arms are configured to provide a first power in the form of alternating current at their respective phase outputs. An energy store is configured to be connected to the phase output of the third bridge arm, and the third bridge arm is configured to exchange a second power between the DC source and the energy store and between the energy store and the DC link circuit/ A control unit is configured to control the bridge arms in such a manner that the sum of the first power and the second power corresponds to a constant set point.
Abstract:
An inverter has an inverter bridge connected between two DC busbars on the input side and connected to an AC output on the output side. The two DC busbars run, in a manner overlapping one another, in planes which are parallel to one another. The inverter bridge has a subcircuit having a plurality of semiconductor switches between the AC output and each DC busbar. Semiconductor modules which form the two subcircuits are connected, in a manner arranged beside one another, to the two DC busbars and to the AC output via connections. A connection element which leads to the AC output begins on that side of the DC busbar which faces the semiconductor modules in a region overlapped by the DC busbars and connects the semiconductor modules of the two subcircuits to one another there.
Abstract:
The disclosure relates to an inverter, in particular for a photovoltaic system, including a housing with at least one chamber and a cooling air channel formed within the chamber for guiding ambient air as cooling air for electrical and/or electronic components of the inverter disposed along the cooling air channel. The cooling air channel extends through the housing from an air inlet to an air outlet. The inverter includes a further air outlet provided within the cooling air channel between two of the components to be cooled, and is arranged above the air inlet and the air outlet. The disclosure further relates to a method of cooling such an inverter.
Abstract:
The method of detecting an arc fault in a power circuit includes determining a first signal related to current flowing in the power circuit is determined and analyzing the first signal to determine whether the signal indicates the presence of an electric arc in the power circuit. In case the first signal indicates the presence of an electric arc in the power circuit, means for suppressing an electric arc are activated. A second signal related to current flowing in the power circuit is then determined and analyzed. An occurrence of an arc fault in the power circuit is signaled if the second signal does not indicate the presence of an electric arc. The system for detecting an arc fault is designed to perform a corresponding method.
Abstract:
A DC/AC converter for converting DC power of a number of inductively connected generators into power grid conformal AC power for feeding into a connected power grid with a number of phases, includes an intermediate circuit with a positive and a negative intermediate circuit connection, and for each phase, a bridge. Each bridge includes a first switch between the positive intermediate circuit connection and a phase terminal, a second switch connected between a positive generator terminal of the generator and the phase terminal, a third switch connected between a negative generator terminal of the generator and the phase terminal, and a fourth switch between the negative intermediate circuit connection and the phase terminal.
Abstract:
The method of detecting an arc fault in a power circuit includes determining a first signal related to current flowing in the power circuit is determined and analyzing the first signal to determine whether the signal indicates the presence of an electric arc in the power circuit. In case the first signal indicates the presence of an electric arc in the power circuit, means for suppressing an electric arc are activated. A second signal related to current flowing in the power circuit is then determined and analyzed. An occurrence of an arc fault in the power circuit is signaled if the second signal does not indicate the presence of an electric arc. The system for detecting an arc fault is designed to perform a corresponding method.