Abstract:
A computer-implemented method for operating an autonomous or semi-autonomous vehicle may include identifying a vehicle operator and retrieving an associated vehicle operator profile. Operating data regarding operation of the autonomous or semi-autonomous vehicle may be received that includes data from sensors disposed within the vehicle. When a request to enable an autonomous operation feature is received, (i) autonomous operation risk levels associated with vehicle operation by the autonomous operation feature based upon the received operating data, and (ii) operator risk levels associated with vehicle operation by the vehicle operator based upon the vehicle operator profile are determined. Autonomous operation feature enablement may be allowed based upon a comparison of (i) autonomous operation risk levels with (ii) operator risk levels. As a result, only safe autonomous feature engagement may be facilitated, and risk averse vehicle owners may receive insurance discounts based upon this safe autonomous feature engagement functionality.
Abstract:
A computer-implemented method for determining a risk rating of a vehicle. The method includes receiving information indicative of protections against unauthorized electronic access to one or more electronic systems of a vehicle. The method includes determining a vehicle security level based at least on the information indicative of protections against unauthorized electronic access. The method includes determining a risk rating associated with the vehicle. The method includes setting at least one parameter of an insurance policy associated with the vehicle based on at least the determined risk rating.
Abstract:
A method and computer system provides vehicle insurance underwriting and ratings to a policy holder. The method and system receives captured sensor data associated with a vehicle from the policy holder. For example, the captured sensor data may include vehicle image and sound data. The method and system may compare the received data to baseline data to determine an operating condition of the vehicle. Based at least in part on the determined operating condition of the vehicle, the method and system may identify a risk of loss for the vehicle. The method and system may then determine an insurance premium for the vehicle based at least in part on the identified risk of loss, and provide the determined insurance premium to the policy holder. In some embodiments, the sensor data is image and sound data captured by a user's mobile phone.
Abstract:
A method includes receiving and storing sensor data including a first plurality of data points indicative of a plurality of respective states of the environment external to a vehicle at a plurality of respective times, external data including a second plurality of data points indicative of an additional plurality of respective states of the external environment, and synchronization data. The external data is data that was received by the vehicle from a handheld mobile communication device of a pedestrian external to the vehicle via a wireless link, and is indicative of objects sensed by the handheld mobile communication device. The method also includes generating an animated re-creation of an event involving the vehicle using the stored data, and causing the animated re-creation of the event to be displayed.
Abstract:
A computer system or computer-implemented method may provide incentives to an insured customer for receiving sensor data indicating risk-reducing and risk-increasing behavior during the policy term. In-vehicle sensors or other devices may gather information about the vehicle and its use during the policy term and send the information to a back-end system for analysis. Based on this analysis, the back-end system may determine that the received information is indicative of risk-reducing or increasing behavior. Upon confirmation that the information indicates risk-reducing or increasing behavior, the back-end system may perform one or more actions defined by a set of rules to establish an incentive or disincentive for the customer corresponding to the behavior.
Abstract:
A computer implemented method for providing insurance comprises receiving a plurality of vehicle data including a start point, an end point and a frequency value. The method further comprises analyzing the plurality of vehicle data to determine a driving route associated with the vehicle. The method also comprises determining, based on the frequency value, that the driving route is a common driving route and a risk level of the common driving route. The method further comprises processing one or more insurance options, including pricing and underwriting, based at least in part on the risk level of the common driving route.
Abstract:
Systems and methods are disclosed for estimating slipperiness of a road surface. This estimate may be obtained using an image sensor mounted on a vehicle. The estimated road slipperiness may be utilized when calculating a risk index for the road, or for an area including the road. If a predetermined threshold for slipperiness is exceeded, corrective actions may be taken. For instance, warnings may be generated to human drivers that are in control of driving vehicle, and autonomous vehicles may automatically adjust vehicle speed based upon road slipperiness detected.
Abstract:
According to certain aspects, a computer-implemented method for operating an autonomous or semi-autonomous vehicle may be provided. With the customer's permission, an identity of a vehicle operator may be identified and a vehicle operator profile may be retrieved. Operating data regarding autonomous operation features operating the vehicle may be received from vehicle-mounted sensors. When a request to disable an autonomous feature is received, a risk level for the autonomous feature is determined and compared with a driver behavior setting for the autonomous feature stored in the vehicle operator profile. Based upon the risk level comparison, the autonomous vehicle retains control of vehicle or the autonomous feature is disengaged depending upon which is the safer driver—the autonomous vehicle or the vehicle human occupant. As a result, unsafe disengagement of self-driving functionality for autonomous vehicles may be alleviated. Insurance discounts may be provided for autonomous vehicles having this safety functionality.
Abstract:
Methods and systems for monitoring use, determining risk, and pricing insurance policies for a vehicle having one or more autonomous or semi-autonomous operation features are provided. According to certain aspects, a computer-implemented method for real-time determination of the status of autonomous operation features of an autonomous or semi-autonomous vehicle may be provided. With the customer's permission, the operation of the autonomous or semi-autonomous vehicle may be monitored to obtain operating data from one or more autonomous operation features. An operating status of the autonomous features may be determined based upon the operating data. After which, a change in the operating status of the autonomous features may be identified, and a report containing information regarding the change in the operating status of the autonomous features may be generated. Insurance discounts may be provided to risk averse customers that maintain their autonomous vehicles, and associated accident avoidance functionality, in good working condition.
Abstract:
A computer implemented method for providing insurance comprises receiving a plurality of vehicle data including a start point, an end point and a frequency value. The method further comprises analyzing the plurality of vehicle data to determine a driving route associated with the vehicle. The method also comprises determining, based on the frequency value, that the driving route is a common driving route and a risk level of the common driving route. The method further comprises processing one or more insurance options, including pricing and underwriting, based at least in part on the risk level of the common driving route.