Abstract:
A semiconductor device is made by providing a first semiconductor wafer having semiconductor die. A gap is made between the semiconductor die. An insulating material is deposited in the gap. A portion of the insulating material is removed to form a first through hole via (THV). A conductive lining is conformally deposited in the first THV. A solder material is disposed above the conductive lining of the first THV. A second semiconductor wafer having semiconductor die is disposed over the first wafer. A second THV is formed in a gap between the die of the second wafer. A conductive lining is conformally deposited in the second THV. A solder material is disposed above the second THV. The second THV is aligned to the first THV. The solder material is reflowed to form the conductive vias within the gap. The gap is singulated to separate the semiconductor die.
Abstract:
A semiconductor device is made by providing a first semiconductor wafer having semiconductor die. A gap is made between the semiconductor die. An insulating material is deposited in the gap. A portion of the insulating material is removed to form a first through hole via (THV). A conductive lining is conformally deposited in the first THV. A solder material is disposed above the conductive lining of the first THV. A second semiconductor wafer having semiconductor die is disposed over the first wafer. A second THV is formed in a gap between the die of the second wafer. A conductive lining is conformally deposited in the second THV. A solder material is disposed above the second THV. The second THV is aligned to the first THV. The solder material is reflowed to form the conductive vias within the gap. The gap is singulated to separate the semiconductor die.
Abstract:
A semiconductor device has conductive pillars formed over a carrier. A first semiconductor die is mounted over the carrier between the conductive pillars. An encapsulant is deposited over the first semiconductor die and carrier and around the conductive pillars. A recess is formed in a first surface of the encapsulant over the first semiconductor die. The recess has sloped or stepped sides. A first interconnect structure is formed over the first surface of the encapsulant. The first interconnect structure follows a contour of the recess in the encapsulant. The carrier is removed. A second interconnect structure is formed over a second surface of the encapsulant and first semiconductor die. The first and second interconnect structures are electrically connected to the conductive pillars. A second semiconductor die is mounted in the recess. A third semiconductor die is mounted over the recess and second semiconductor die.
Abstract:
An integrated circuit packaging system, and a method of manufacture therefor, including: electrical terminals; circuitry protective material around the electrical terminals and formed to have recessed pad volumes; routable circuitry on the top surface of the circuitry protective material; and an integrated circuit die electrically connected to the electrical terminals.
Abstract:
A semiconductor wafer has an insulating layer formed over an active surface of the wafer. A conductive layer is formed over the insulating layer. A first via is formed from a back surface of the semiconductor wafer through the semiconductor wafer and insulating layer to the conductive layer. A conductive material is deposited in the first via to form a conductive TSV. An insulating material can be deposited in the first via to form an insulating core within the conductive via. After forming the conductive TSV, a second via is formed around the conductive TSV from the back surface of the semiconductor wafer through the semiconductor wafer and insulating layer to the conductive layer. An insulating material is deposited in the second via to form an insulating annular ring. The conductive via can be recessed within or extend above a surface of the semiconductor die.
Abstract:
A semiconductor device has a first semiconductor die mounted over a carrier. An interposer frame has an opening in the interposer frame and a plurality of conductive pillars formed over the interposer frame. The interposer is mounted over the carrier and first die with the conductive pillars disposed around the die. A cavity can be formed in the interposer frame to contain a portion of the first die. An encapsulant is deposited through the opening in the interposer frame over the carrier and first die. Alternatively, the encapsulant is deposited over the carrier and first die and the interposer frame is pressed against the encapsulant. Excess encapsulant exits through the opening in the interposer frame. The carrier is removed. An interconnect structure is formed over the encapsulant and first die. A second semiconductor die can be mounted over the first die or over the interposer frame.
Abstract:
A semiconductor device has a first thermally conductive layer formed over a first surface of a semiconductor die. A second surface of the semiconductor die is mounted to a sacrificial carrier. An encapsulant is deposited over the first thermally conductive layer and sacrificial carrier. The encapsulant is planarized to expose the first thermally conductive layer. A first insulating layer is formed over the second surface of the semiconductor die and a first surface of the encapsulant. A portion of the first insulating layer over the second surface of the semiconductor die is removed. A second thermally conductive layer is formed over the second surface of the semiconductor die within the removed portion of the first insulating layer. An electrically conductive layer is formed within the insulating layer around the second thermally conductive layer. A heat sink can be mounted over the first thermally conductive layer.
Abstract:
A semiconductor device comprises a first semiconductor die. An encapsulant is disposed around the first semiconductor die. A first stepped interconnect structure is disposed over a first surface of the encapsulant. An opening is formed in the first stepped interconnect structure. The opening in the first stepped interconnect structure is over the first semiconductor die. A second semiconductor die is disposed in the opening of the first stepped interconnect structure. A second stepped interconnect structure is disposed over the first stepped interconnect structure. A conductive pillar is formed through the encapsulant.
Abstract:
An integrated circuit packaging system, and a method of manufacture therefor, including: electrical terminals; circuitry protective material around the electrical terminals and formed to have recessed pad volumes; routable circuitry on the top surface of the circuitry protective material; and an integrated circuit die electrically connected to the electrical terminals.
Abstract:
A semiconductor device is manufactured by, first, providing a wafer, designated with a saw street guide, and having a bond pad formed on an active surface of the wafer. The wafer is taped with a dicing tape. The wafer is singulated along the saw street guide into a plurality of dies having a plurality of gaps between each of the plurality of dies. The dicing tape is stretched to expand the plurality of gaps to a predetermined distance. An organic material is deposited into each of the plurality of gaps. A top surface of the organic material is substantially coplanar with a top surface of a first die of the plurality of dies. A redistribution layer is patterned over a portion of the organic material. An under bump metallization (UBM) is deposited over the organic material in electrical communication, through the redistribution layer, with the bond pad.