Abstract:
A base station identifies user-wearable devices being worn by a user, wherein each of the user-wearable devices is battery powered, includes a plurality of sensors, performs wirelessly communication, and is worn on a separate portion of the user's body. For each of the user-wearable devices, the base station identifies a portion of the user's body on which the user-wearable device is being worn. The base station also identifies an activity in which the user is engaged, and identifies multiple types of sensor data to be sensed using the sensors of the user-wearable devices, to enable tracking of metric(s) relevant to the activity in which the user is engaged. The base station determines how to distribute sensing responsibilities for the multiple types of sensor data among the sensors of the user-wearable devices being worn by the user, and selectively activates and deactivates individual sensors of each of the user-wearable devices.
Abstract:
A user-wearable device includes a front facing first light detector and a backside optical sensor, which faces the user's skin and includes a light source and a second light detector. The device also includes a skin tone detector and an ultraviolet (UV) exposure detector. The UV exposure detector is adapted to determine estimate(s) of a user's exposure to UV light in dependence on signal(s) produced using the first light detector, calibrate UV exposure threshold(s) in dependence on a skin tone metric produced using the skin tone detector, compare estimate(s) of a user's exposure to UV light to calibrated UV exposure threshold(s), and selectively trigger an alert in dependence on results of the comparison(s). The second light detector is also used to produce a photoplethysmography (PPG) signal from which measures heart rate (HR), heart rate variability (HRV), respiration rate (RR) or respiratory sinus arrhythmia (RSA) is/are produced.
Abstract:
A user-wearable device include a wireless transceiver, a primary radiator antenna and a secondary radiator antenna. The primary radiator antenna produces a first radio frequency (RF) radiation pattern when driven by the wireless transceiver, wherein the first RF radiation pattern is at least partially circularly polarized. The secondary radiator antenna, which is spaced apart from the primary radiator antenna, is configured to modify the first RF radiation pattern produced by the primary radiator antenna to thereby produce a second RF radiation pattern having increased RF radiation in a specific direction (e.g., away from the user's/wearer's skin) compared to the first RF radiation pattern. Inclusion of both the primary radiator antenna and the secondary radiator antenna increases an overall antenna efficiency (e.g., by about 3 dB) in the specific direction compared to if only the primary radiator antenna was included.
Abstract:
A physiologic sensor pod comprises a housing including first and second electrodes on a bottom surface thereof, and a third electrode on a top surface thereof. Within the housing is a battery, a battery charging circuit, an ECG sensor circuit, switch circuitry, and a controller adapted to control at least a portion of the switch circuitry. When the switch circuitry is in a first configuration the first and second electrodes are connected to the battery charging circuit. When the switch circuitry is in a second configuration, the first and second electrodes are connected, respectively, to first and second inputs of the ECG sensor circuit. When the switch circuitry is in a third configuration, one or both of the first and second electrodes is/are coupled to a first input of an ECG sensor circuit and the third electrode is coupled to a second input of the ECG sensor circuit.
Abstract:
An integrated sensor module includes one or more packaged light source semiconductor devices and one or more packaged light detector semiconductor devices mounted to a top surface of a substrate. A pre-molded cover structure includes a portion molded from an opaque molding compound and a further portion molded from a light transmissive molding compound. For each of the packaged light source and light detector semiconductor devices, the pre-molded cover structure includes a pre-molded cavity covered by a window formed of the light transmissive molding compound. The pre-molded cover structure is attached to the substrate such that each of the packaged light source and light detector semiconductor devices fits within a respective cavity, and such that a barrier formed of the opaque molding compound is positioned between each packaged light source semiconductor device and light detector semiconductor device. The module can also include additional sensors and/or electrodes for use by sensors.
Abstract:
Described herein is an adaptor configured to be selectively mated with a device, such as an activity monitor, to enable the device to be clipped to a person's finger or clothes, instead of being strapped around a wrist. The adaptor includes a base, lever and hinge. At least one connector extending from the base and is configured to mate with a portion of the device to thereby selectively mate the adaptor with the device. The base includes an opening sized and positioned to enable a distal portion of a person's finger to extend through the opening and contact the device when the adaptor and device are mated and the device is clipped to a person's finger. This enables the persons' skin to be in contact with at least one sensor of the device, to thereby enable the device to perform functions that rely on the sensor(s) contacting a persons' skin.
Abstract:
An activity monitor such as a wrist-worn device has an accelerometer which continuously detects motion of the user. The activity monitor also has an on-demand heart rate monitor which is activated by the user touching it from time to time. A calorie expenditure based on the motion of the user can be modified based on a heart rate measurement. Further, a determination can be made as to whether the user has made repetitive motions for a period of time. If the repetitive motions are detected, a calorie expenditure based on the heart rate is determined and compared to the calorie expenditure based on the user motion, and the higher value prevails. A situation is avoided in which the activity monitor underestimates the calories expended, such as when the user is exercising strenuously but the accelerometer indicates relatively little motion, e.g., during strength training.
Abstract:
A processor for an activity monitor for a user has a reduced power mode in which it does not process data samples from an accelerometer. A wake up circuit or logic evaluates an output from the accelerometer and determines whether the output exceeds a threshold, indicating a threshold amount of activity of the user. If the threshold is exceeded, the wake up circuit or logic causes the processor to enter an active mode. The processor evaluates samples of the accelerometer in an evaluation period and decides whether to continue in the active mode or return to the reduced power mode. If the user is deemed to be sufficiently active, the processor continues in the active mode. In another aspect, the threshold can be set based on an activity level of the user before the reduced power mode or sensor data such as ambient light level or skin temperature.
Abstract:
Technology is described for authenticating a user based on a wrist vein pattern. A wrist contact sensor device detects a wrist vein pattern. The wrist contact sensor device may be wearable by being positioned by a wearable support structure like a wristband. One or more pattern recognition techniques may be used to identify whether a match exists between a wrist vein pattern being detected by the sensors and data representing a stored wrist vein pattern. A user may be authenticated based on whether a match is identified satisfying matching criteria.
Abstract:
A physiologic sensor pod comprises a housing including first and second electrodes on a bottom surface thereof, and a third electrode on a top surface thereof. Within the housing is a battery, a battery charging circuit, an ECG sensor circuit, switch circuitry, and a controller adapted to control at least a portion of the switch circuitry. When the switch circuitry is in a first configuration the first and second electrodes are connected to the battery charging circuit. When the switch circuitry is in a second configuration, the first and second electrodes are connected, respectively, to first and second inputs of the ECG sensor circuit. When the switch circuitry is in a third configuration, one or both of the first and second electrodes is/are coupled to a first input of an ECG sensor circuit and the third electrode is coupled to a second input of the ECG sensor circuit.