Abstract:
Semiconductor memory devices are provided. A semiconductor memory device includes a substrate. The semiconductor memory device includes a plurality of memory cell transistors vertically stacked on the substrate. The semiconductor memory device includes a first conductive line connected to a source region of at least one of the plurality of memory cell transistors. The semiconductor memory device includes a second conductive line connected to a plurality of gate electrodes of the plurality of memory cell transistors. Moreover, the semiconductor memory device includes a data storage element connected to a drain region of the at least one of the plurality of memory cell transistors.
Abstract:
A semiconductor device may include a device isolation region configured to define an active region in a substrate, an active gate structure disposed in the active region, and a field gate structure disposed in the device isolation region. The field gate structure may include a gate conductive layer. The active gate structure may include an upper active gate structure including a gate conductive layer and a lower active gate structure formed under the upper active gate structure and vertically spaced apart from the upper active gate structure. The lower active gate structure may include a gate conductive layer. A top surface of the gate conductive layer of the field gate structure is located at a lower level than a bottom surface of the gate conductive layer of the upper active gate structure.
Abstract:
This electronic device may comprise: a flexible display; a first rolling actuator configured to extend the flexible display in a first direction; a second rolling actuator configured to extend the flexible display in a second direction opposite to the first direction; and at least one processor. The at least one processor may be configured to: determine the mounting state of the electronic device; acquire information about the position of a peripheral device, which is linked with the electronic device, based on the mounting state satisfying a designated condition; set the extension direction of the flexible display on the basis of the information about the position of the peripheral device; and control the first rolling actuator and/or the second rolling actuator to extend the flexible display in the first direction and/or the second direction on the basis of the set extension direction.
Abstract:
A semiconductor device includes: a data sampler configured to receive a data signal having a first frequency and to sample the data signal with a clock signal having a second frequency, higher than the first frequency, to output data for a time corresponding to a unit interval of the data signal; an error sampler configured to sample the data signal with an error clock signal having the second frequency and a phase, different from a phase of the clock signal, to output a plurality of pieces of error data for the time corresponding to the unit interval; and an eye-opening monitor (EOM) circuit configured to compare the data with each of the plurality of pieces of error data to obtain an eye diagram of the data signal in the unit interval.
Abstract:
A semiconductor device includes a substrate having a cell region and a connection region, a first stack structure with a plurality of first gate layers and a plurality of first interlayer insulating layers, and a second stack structure with a plurality of second gate layers and a plurality of second interlayer insulating layers . Each of the first gate layers includes a central portion in the cell region of the substrate and an end portion in the connection region of the substrate. Each of the second gate layers includes a central portion in the cell region of the substrate and an end portion in the connection region of the substrate. A thickness difference between the end and central portions of each first gate layer is different from a thickness difference between the end and central portions of each second gate layer.
Abstract:
A transmitter includes a multiplexer, control logic and a voltage mode driver. The multiplexer generates a plurality of time-interleaved data signals based on a plurality of input data signals and multi-phase clock signals. The plurality of input data signals are input in parallel. Each of the plurality of input data signals is a binary signal and has two voltage levels that are different from each other. The control logic generates at least one pull-down control signal and a plurality of pull-up control signals based on the plurality of time-interleaved data signals. Each of the plurality of pull-up control signals has a voltage level that is temporarily boosted. The voltage mode driver generates an output data signal based on the at least one pull-down control signal and the plurality of pull-up control signals. The output data signal is a duobinary signal and has three voltage levels that are different from each other.
Abstract:
Semiconductor memory devices are provided. A semiconductor memory device includes a substrate. The semiconductor memory device includes a plurality of memory cell transistors vertically stacked on the substrate. The semiconductor memory device includes a first conductive line connected to a source region of at least one of the plurality of memory cell transistors. The semiconductor memory device includes a second conductive line connected to a plurality of gate electrodes of the plurality of memory cell transistors. Moreover, the semiconductor memory device includes a data storage element connected to a drain region of the at least one of the plurality of memory cell transistors.
Abstract:
Disclosed are three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor memory device comprises a substrate that includes a cell array region and a connection region, an electrode structure that includes a plurality of electrodes and a plurality of dielectric layers alternately stacked on the substrate and has a stepwise structure on the connection region, an etch stop pattern that covers the stepwise structure of the electrode structure. The electrode structure and the etch stop pattern extend in a first direction when viewed in plan. The electrode structure has a first width in a second direction intersecting the first direction. The etch stop pattern has a second width in the second direction. The second width is less than the first direction.
Abstract:
A semiconductor device may include a device isolation region configured to define an active region in a substrate, an active gate structure disposed in the active region, and a field gate structure disposed in the device isolation region. The field gate structure may include a gate conductive layer. The active gate structure may include an upper active gate structure including a gate conductive layer and a lower active gate structure formed under the upper active gate structure and vertically spaced apart from the upper active gate structure. The lower active gate structure may include a gate conductive layer. A top surface of the gate conductive layer of the field gate structure is located at a lower level than a bottom surface of the gate conductive layer of the upper active gate structure.
Abstract:
A semiconductor device may include a semiconductor substrate with first and second spaced apart source/drain regions defining a channel region therebetween and a control gate structure on the channel region between the first and second spaced apart source/drain regions. More particularly, the control gate structure may include a first gate electrode on the channel region adjacent the first source/drain region, and a second gate electrode on the channel region adjacent the second source/drain region. Moreover, the first and second gate electrodes may be electrically isolated. Related devices, structures, methods of operation, and methods of fabrication are also discussed.