Abstract:
A composite cathode active material and a cathode and a lithium battery including the composite cathode active material. The composite cathode active material has a core including a plurality of primary particles including a nickel-containing first lithium transition metal oxide having a layered crystal structure; a grain boundary disposed between adjacent primary particles of the plurality of primary particles; and a shell on the core, the shell including a second lithium transition metal oxide having a spinel crystal structure, wherein the grain boundary includes a first composition having a spinel crystal structure.
Abstract:
A composite cathode active material, and a cathode and a lithium battery each including the composite cathode active material. The composite cathode active material includes: a core including a first lithium transition metal oxide represented by Formula 1, LiaMO2 wherein, in Formula 1, M includes Ni and at least one non-nickel Group 4 to Group 13 element, a content of Ni is about 70 mol % or greater, based on a total content of M, 0.9≤a≤1.1, and wherein the first lithium transition metal oxide has a layered crystal structure belonging to an R3m space group; and a shell on a surface of the core, the shell having a spinel crystal structure and including a dopant.
Abstract:
A cathode active material includes a secondary particle including an aggregate of a plurality of primary particles, wherein the secondary particle includes a nickel-containing lithium transition metal oxide having a layered crystal structure, wherein the plurality of primary particles includes a first primary particle having a size greater than about 400 nanometers, a second primary particle having a size less than about 150 nanometers, and a third primary particle having a size of about 150 nanometers to about 400 nanometers, wherein the third primary particle has a area of greater than or equal to about 80% of a total area of the plurality of primary particles, and wherein the secondary particle has a porosity of less than or equal to about 10% of a total area of the cathode active material.
Abstract:
A positive active material including: a core comprising a metal oxide, a non-metal oxide, or a combination thereof capable of intercalation and deintercalation of lithium ions or sodium ions; and a non-conductive carbonaceous film including oxygen on at least one portion of a surface of the core; a lithium battery including the positive active material; and a method of manufacturing the positive active material.
Abstract:
A composite cathode active material including: a lithium composite oxide; a metal phosphate represented by Formula 1, preparation methods thereof, a cathode and a lithium battery. MxPyOz Formula 1 wherein, in Formula 1, M is vanadium, niobium, tantalum, or a combination thereof, 1≦y/x≦1.33, and 4≦z/y≦5.
Abstract translation:一种复合阴极活性材料,包括:锂复合氧化物; 由式1表示的金属磷酸盐,其制备方法,阴极和锂电池。 式1其中,在式1中,M是钒,铌,钽或它们的组合,1≦̸ y / x≦̸ 1.33和4< lE; z / y≦̸ 5。
Abstract:
A positive active material including: a core comprising a metal oxide, a non-metal oxide, or a combination thereof capable of intercalation and deintercalation of lithium ions or sodium ions; and a non-conductive carbonaceous film including oxygen on at least one portion of a surface of the core; a lithium battery including the positive active material; and a method of manufacturing the positive active material.
Abstract:
A composite cathode active material and a cathode and a lithium battery including the composite cathode active material. The composite cathode active material has a core including a plurality of primary particles including a nickel-containing first lithium transition metal oxide having a layered crystal structure; a grain boundary disposed between adjacent primary particles of the plurality of primary particles; and a shell on the core, the shell including a second lithium transition metal oxide having a spinel crystal structure, wherein the grain boundary includes a first composition having a spinel crystal structure.
Abstract:
A composite cathode active material for a lithium battery including: a lithium composite oxide; and a coating layer including a metal oxide and a lithium fluoride, (LiF) wherein the coating layer is disposed on at least a portion of a surface of the lithium composite oxide.
Abstract:
A cathode active material includes a core capable of intercalating and deintercalating lithium ions; and a coating layer on at least a portion of the core, wherein the coating layer includes a composite including a metal oxide compound and a phosphate compound, the metal oxide compound is at least one compound selected from a lithium metal oxide and a metal oxide, the phosphate compound is at least one compound selected from a lithium phosphate, a lithium metal phosphate, and a metal phosphate, and a weight ratio of the metal oxide compound to the phosphate compound is from greater than 0 to about 1.
Abstract:
A positive active material including: a core comprising a metal oxide, a non-metal oxide, or a combination thereof capable of intercalation and deintercalation of lithium ions or sodium ions; and a non-conductive carbonaceous film including oxygen on at least one portion of a surface of the core; a lithium battery including the positive active material; and a method of manufacturing the positive active material.