Abstract:
A cathode active material including a lithium transition metal oxide of Chemical Formula 1: Li2-xMexMyMn1-yO3-δ Chemical Formula 1 wherein 0≦x≦0.2, 0≦y≦0.2, 0
Abstract:
A composite positive electrode active material, the positive electrode active material including: a first metal oxide having a layered structure; and a second metal oxide having a spinel structure, wherein second metal oxide is represented by Formula 1, and wherein the first metal oxide and the second metal oxide form a composite: Li2M1(1+a)Mn(3−a)O8 Formula 1 wherein, in Formula 1, −1
Abstract:
A positive active material including: a core comprising a metal oxide, a non-metal oxide, or a combination thereof capable of intercalation and deintercalation of lithium ions or sodium ions; and a non-conductive carbonaceous film including oxygen on at least one portion of a surface of the core; a lithium battery including the positive active material; and a method of manufacturing the positive active material.
Abstract:
A composite positive electrode active material, the positive electrode active material including: a first metal oxide having a layered structure; and a second metal oxide having a spinel structure, wherein second metal oxide is represented by Formula 1, and wherein the first metal oxide and the second metal oxide form a composite: Li2M1(1+a)Mn(3−a)O8 Formula 1 wherein, in Formula 1, −1
Abstract:
A positive active material including: a core comprising a metal oxide, a non-metal oxide, or a combination thereof capable of intercalation and deintercalation of lithium ions or sodium ions; and a non-conductive carbonaceous film including oxygen on at least one portion of a surface of the core; a lithium battery including the positive active material; and a method of manufacturing the positive active material.
Abstract:
A cathode active material including a layered lithium transition metal oxide, wherein the layered lithium transition metal oxide includes a metal cation having an oxidation number of +4, and wherein the metal cation is disposed in an octahedral site of a lattice of the layered lithium transition metal oxide.
Abstract:
A composite cathode active material including: a lithium composite oxide; a metal phosphate represented by Formula 1, preparation methods thereof, a cathode and a lithium battery. MxPyOz Formula 1 wherein, in Formula 1, M is vanadium, niobium, tantalum, or a combination thereof, 1≦y/x≦1.33, and 4≦z/y≦5.
Abstract translation:一种复合阴极活性材料,包括:锂复合氧化物; 由式1表示的金属磷酸盐,其制备方法,阴极和锂电池。 式1其中,在式1中,M是钒,铌,钽或它们的组合,1≦̸ y / x≦̸ 1.33和4< lE; z / y≦̸ 5。
Abstract:
A positive active material including: a core comprising a metal oxide, a non-metal oxide, or a combination thereof capable of intercalation and deintercalation of lithium ions or sodium ions; and a non-conductive carbonaceous film including oxygen on at least one portion of a surface of the core; a lithium battery including the positive active material; and a method of manufacturing the positive active material.
Abstract:
A composite cathode active material including: a core including an active material; and a coating film disposed on a surface of the core, the coating film including a carbon nanostructure; and a first polymer, wherein the first polymer is at least one selected from i) a fully fluorinated polymer and ii) a partially fluorinated polymer having a fluorine content of about 60 atomic percent to about 90 atomic percent, based on a total content of the partially fluorinated polymer.
Abstract:
A cathode includes: a cathode active material comprising a lithium transition metal oxide; a conductive material; and a binder, wherein the lithium transition metal oxide includes nickel and a transition metal other than nickel, wherein the lithium transition metal oxide has a layered crystal structure, wherein a content of the nickel is 30 mole percent or greater, based on a total number of moles of transition metals of the lithium transition metal oxide, wherein the conductive material comprises a linear carbon conductive material, wherein the binder includes a first binder, wherein the first binder including fluorine and a polar functional group, and a second binder, which does not include fluorine, and wherein an amount of the linear carbon conductive material is 0.1 weight percent or greater, based on a total combined weight of the cathode active material, the conductive material, and the binder.