Abstract:
A quantum dot including a core and a shell disposed on an outer surface of the core. The core includes a first semiconductor nanocrystal including a Group II-VI compound. The shell includes a second semiconductor nanocrystal. An effective mass of the second semiconductor nanocrystal is about 0.5 times to about 2.0 times an effective mass of the first semiconductor nanocrystal and the quantum dot does not include cadmium, lead, mercury, or a combination thereof.
Abstract:
An electrical conductor including: a first conductive layer including a plurality of metal nanowires; and a second conductive layer disposed on a surface of the first conductive layer, wherein the second conductive layer includes a plurality of metal oxide nanosheets, wherein in the first conductive layer, a metal nanowire of the plurality of metal nanowires contacts at least two metal oxide nanosheets of the plurality of metal oxide nanosheets, and wherein the plurality of metal oxide nanosheets includes an electrical connection between contacting metal oxide nanosheets.
Abstract:
An electrical conductor including a first conductive layer including a plurality of ruthenium oxide nanosheets, wherein the plurality of ruthenium oxide nanosheets include an electrical connection between contacting ruthenium oxide nanosheets and at least one of the plurality of ruthenium oxide nanosheets includes a plurality of metal clusters on a surface of the at least one ruthenium oxide nanosheet.
Abstract:
An image sensor includes an optical sensor layer including a plurality of light-sensitive cells configured to sense light to generate electrical signals, and a color filter array layer disposed on the optical sensor layer and including a plurality of color filters respectively facing the plurality of light-sensitive cells. Each of the plurality of color filters includes a nanostructure in which a first material having a first refractive index and a second material having a second refractive index higher than the first refractive index are arranged. The first material and the second material are alternatively positioned at an interval less than a central wavelength of a color of the color filter. Thus, a thin image sensor having good wavelength selectivity and suitable for obtaining high resolution images is provided.
Abstract:
Provided are stretchable devices, methods of manufacturing the same, and electronic apparatuses including the stretchable devices. A stretchable device may include first and second material layers, each including an elastomeric polymer, and an organic layer that is disposed between the first and second material layers. The organic layer may include an organic semiconductor. As least one electrode element may be embedded in at least one of the first and second material layers. The at least one electrode element may be electrically connected to the organic layer. The stretchable device may be stretchable in a direction parallel to the organic layer. The stretchable device may be a transistor, and may further include a gate electrode.
Abstract:
Provided an imaging apparatus including a first optical device, a second optical device disposed such that light transmitted through the first optical device is incident on the second optical device, and a third optical device disposed such that light transmitted through the second optical device is incident on the third optical device, wherein at least one of the first optical device, the second optical device, and the third optical device includes a plurality of nanostructures, and heights of at least two nanostructures of the plurality of nanostructures are different from each other.
Abstract:
Nanostructures including a first semiconductor nanocrystal including zinc and selenium, and a second semiconductor nanocrystal including a zinc chalcogenide, wherein a composition of the second semiconductor nanocrystal is different from a composition of the first semiconductor nanocrystal, wherein the nanostructures further include tellurium, wherein in the nanostructures, a mole ratio of selenium to tellurium is greater than or equal to about 0.83:1 and less than or equal to about 10:1, wherein a derivative thermogravimetry curve of the nanostructures has an extreme value in a temperature range of greater than or equal to about 250° C. and less than or equal to about 420° C.
Abstract:
A cadmium free quantum dot or a population thereof or a device including the same, wherein the cadmium free quantum dot includes a core (or a semiconductor nanocrystal particle) including a first semiconductor including a Group IIB-VI compound and a shell (or a coating) disposed on the core (or the semiconductor nanocrystal particle) including a Group IIB-V compound and exhibits a quantum efficiency of about 60% or higher.
Abstract:
A cadmium free quantum dot not including cadmium and including: a semiconductor nanocrystal core comprising indium and phosphorous, a first semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core and comprising zinc and selenium, and a second semiconductor nanocrystal shell disposed on the first semiconductor nanocrystal shell and comprising zinc and sulfur, a composition and composite including the same, and an electronic device.
Abstract:
A cadmium free quantum dot including a semiconductor nanocrystal core and a semiconductor nanocrystal shell disposed on the core, wherein the quantum dot does not include cadmium and includes indium and zinc, the quantum dot has a maximum photoluminescence peak in a red light wavelength region, a full width at half maximum (FWHM) of the maximum photoluminescence peak is less than or equal to about 40 nanometers (nm), an ultraviolet-visible (UV-Vis) absorption spectrum of the quantum dot includes a valley between about 450 nm to a center wavelength of a first absorption peak, and a valley depth (VD) defined by the following equation is greater than or equal to about 0.2, a quantum dot polymer composite including the same, and a display device including the quantum dot-polymer composite: (Absfirst−Absvalley)/Absfirst=VD.