Abstract:
A DNA sequencing device includes a first layer having a nanochannel formed therein, and a pair of electrodes arranged vertically relative to each other and spaced apart to define an electrode gap. The electrode gap is exposed in the nanochannel, and the electrode gap is in the range of about 0.3 nm to about 2 nm.
Abstract:
The embodiments disclose a stack feature of a stack configured to confine optical fields within and to a patterned plasmonic underlayer in the stack configured to guide light from a light source to regulate optical coupling.
Abstract:
A three dimensional magnetic recording medium can consist of a first recording layer vertically stacked with a second recording layer. The first stacked recording layer may be tuned with at least one discrete track physically separating multiple data tracks in the first recording layer or tuned by being configured as a bit patterned media.
Abstract:
Provided herein is a method, including creating a first pattern in a data region of a substrate, and creating a second pattern in a servo region of a substrate. A circumferential line pattern is created overlapping the first pattern to create rectangle-shaped protrusions in the data region of the substrate. A chevron pattern is created overlapping the second pattern to create chevron-derived protrusions in the servo region of the substrate.
Abstract:
Provided herein is an apparatus, including a first region of a substrate corresponding to a data region in a patterned recording medium; a first set of protrusions etched out of the first region of the substrate, wherein the protrusions of the first set of protrusions are rectangle shaped; a second region of the substrate corresponding to a servo region in a patterned recording medium; and a second set of protrusions etched out of the second region of the substrate, wherein the second set of protrusions includes radial lines etched into the substrate across chevrons etched out of the substrate.
Abstract:
Provided herein is an apparatus, including a substrate; an etch stop layer overlying the substrate, wherein the etch stop layer is substantially resistant to etching conditions; and a patterned layer overlying the etch stop layer, wherein the patterned layer is substantially labile to the etching conditions, and wherein the patterned layer comprises a number of features including substantially consistent feature profiles among regions of high feature density and regions of low feature density.
Abstract:
Provided herein is an apparatus, including a substrate; an etch stop layer overlying the substrate, wherein the etch stop layer is substantially resistant to etching conditions; and a patterned layer overlying the etch stop layer, wherein the patterned layer is substantially labile to the etching conditions, and wherein the patterned layer comprises a number of features including substantially consistent feature profiles among regions of high feature density and regions of low feature density.
Abstract:
The embodiments disclose a continuous thin film magnetic layer and a patterned hard mask layer configured to be deposited onto the continuous thin film magnetic layer and to have plural ion implantations, wherein the ion implantations are configured to create chemically and structurally altered localized magnetic regions unprotected by the patterned hard mask layer.
Abstract:
Provided herein is an apparatus, including a substrate; an etch stop layer overlying the substrate, wherein the etch stop layer is substantially resistant to etching conditions; and a patterned layer overlying the etch stop layer, wherein the patterned layer is substantially labile to the etching conditions, and wherein the patterned layer comprises a number of features including substantially consistent feature profiles among regions of high feature density and regions of low feature density.
Abstract:
Provided herein is an apparatus, including a substrate; an etch stop layer overlying the substrate, wherein the etch stop layer is substantially resistant to etching conditions; and a patterned layer overlying the etch stop layer, wherein the patterned layer is substantially labile to the etching conditions, and wherein the patterned layer comprises a number of features including substantially consistent feature profiles among regions of high feature density and regions of low feature density.