Abstract:
A method of collecting a metrology data set of a contoured surface with a metrology system and executing an automatic control plan for printing on a contoured surface is disclosed. The method includes attaching a work piece to a work piece frame and scanning a contoured surface of the work piece to obtain a metrology data set, a three-dimensional point cloud model is generated based on the metrology data set. Additionally, the method includes defining a spatial reference model of the work piece frame, and defining a print path for a print head assembly of a surface treatment assembly. Furthermore, the method includes discretizing the contoured surface into a plurality of regions and the print path is further defined into at least one independent regional print path for each region of the plurality of regions. Moreover, a computer software simulation verifies a control plan for printing on the contoured surface.
Abstract:
A method for registering existing vector data associated with a first image of a location to a second image of the location is provided. Typically the images are separated by an increment of time. The method is implemented by at least one computing device including at least one processor in communication with a memory. The method includes receiving, by the at least one computing device, the existing vector data associated with the first image of the location, receiving, by the at least one computing device, a plurality of controls for registering the first image to the second image, applying, by the at least one computing device, the plurality of controls to the existing vector data to generate updated vector data, and storing, in the memory, the updated vector data associated with the second image.
Abstract:
Disclosed herein is an apparatus that comprises an instruction receiving module configured to receive, at a master device, a set of instructions for operating a plurality of peripheral devices. The apparatus also comprises an instruction identification module configured to identify at least one subset of the set of instructions that are associated with at least one slave device. The apparatus further comprises an instruction distribution module configured to send the at least one subset of instructions to the at least one slave device. The apparatus additionally comprises a trigger module configured to send a start signal, from the master device to the at least one slave device, that triggers the at least one slave device to begin executing the at least one subset of instructions such that each of the plurality of peripheral devices operates synchronously based on the executing instructions.
Abstract:
Methods of performing a rotational and translational calibrations of a print control system of an inkjet printer system having an inkjet printhead assembly with one or more inkjet printheads are disclosed. Rotational calibration is performed by printing a first rotational calibration pattern from a first standoff distance and a second rotational calibration pattern from a second standoff distance on a first calibration object. The print control system is calibrated until the rotational calibration patterns are within a direction difference tolerance of each other. Translational calibration is performed by printing a first translation calibration pattern on a second calibration object, rotating the inkjet printhead assembly 180°, and printing a second translational calibration pattern on the second calibration object. The print control system is calibrated until the translational calibration patterns are within a direction difference tolerance of each other.
Abstract:
A camera vision system for creating 3D reconstructions of objects may include a camera, a distance sensor having a fixed spatial relationship with the camera, and a system controller. The system controller receives distance sensor signals from the distance sensor indicating a sensor-to-object distance, determines a camera-to-object distance and a corresponding camera focus state based on the sensor-to-object distance, and transmits camera focus state control signals to cause the camera to adjust to the camera focus state. The system controller retrieves camera intrinsic parameter values for the camera focus state, transmits image capture control signals to cause the camera to capture an object image of the object, receives object image data from the camera for the captured object image, and stores the object image data and the camera intrinsic parameter values in an image database for use in the 3D reconstruction.
Abstract:
A method of analyzing a curved surface is provided. The method includes obtaining a first data point set including data points representative of a distance between points along the curved surface and a reference axis, determining outlier data points in the first data point set, extracting the outlier data points from the first data point set, thereby defining a second data point set. The method also includes determining a fitted curve for the second data point set, wherein the fitted curve defines an approximate true curve of the curved surface.
Abstract:
Systems and methods are provided for verifying the placement of tows by a robot. One embodiment includes a robot that includes an end effector that lays up tows, actuators that reposition the end effector, a memory storing a Numerical Control (NC) program, and a robot controller that directs the actuators to reposition the end effector based on the NC program, and instructs the end effector to lay up tows based on the NC program. The system also includes a sensor system comprising an imaging device that acquires images of the tows as the tows are laid-up, a measuring device that generates input as tows are laid-up by the end effector, and a sensor controller that receives images from the imaging device and the input from the measuring device, and updates stored data to correlate the images with instructions in the NC program, based on the input.
Abstract:
Provided are methods and systems for inspecting surfaces of various components, such as evaluating height deviations on these surfaces. A method involves aggregating inspection data from multiple line scanners into a combined data set. This combined data set represents a portion of the surface that is larger than the field of measurement any one of the scanners. Furthermore, each pair of adjacent scanners operate at different periods of time to avoid interference. Because operating periods are offset, surface portions scanned by the pair of adjacent scanners can overlap without interference. This overlap of the scanned portions ensures that the entire surface is analyzed. The position of scanners relative to the inspection surface may be changed in between the scans and, in some embodiments, even during the scan. This approach allows precise scanning of large surfaces.
Abstract:
A method for registering existing vector data associated with a first image of a location to a second image of the location is provided. Typically the images are separated by an increment of time. The method is implemented by at least one computing device including at least one processor in communication with a memory. The method includes receiving, by the at least one computing device, the existing vector data associated with the first image of the location, receiving, by the at least one computing device, a plurality of controls for registering the first image to the second image, applying, by the at least one computing device, the plurality of controls to the existing vector data to generate updated vector data, and storing, in the memory, the updated vector data associated with the second image.
Abstract:
A boundary determination system for determining boundaries of features in a digital image is provided. The boundary determination system includes a processor coupled to a memory. The processor is configured to analyze a spectral content and a spatial structure of a feature in a digital image, characterize the feature in the digital image, and distinguish the feature from immediate surroundings of the feature in the digital image.