Abstract:
Apparatuses, systems, and methods for inspecting a composite end portion of a part are disclosed. The apparatus may include first and second members having first and second contact elements, respectively. The second member may be movably connected to the first member. The first and second members may be shaped to define a gap sized to receive the end portion. The apparatus may include at least one ultrasonic array supported by at least one of the first and second members. The at least one ultrasonic array may be configured to transmit ultrasonic waves toward the end portion. The apparatus may include a fluid conduit having first and second ends through one of the first and second members. The first end may be configured to be coupled to a suction system, and the second end of the fluid conduit may be configured to be adjacent to a contact surface of the part.
Abstract:
A method of monitoring a thermal protection system coupled to a structural component is provided. The thermal protection system includes a thermally insulative body and at least one layer of thermochromatic material applied thereon such that the at least one layer is positioned between the thermally insulative body and the structural component. The method includes determining a value of a thermochromatic property of the at least one layer of thermochromatic material, wherein the value of the thermochromatic property is responsive to an amount of heat applied to the at least one layer of thermochromatic material, comparing the value to a baseline value of the thermochromatic property, and determining degradation of the thermal protection system when the value of the thermochromatic property deviates from the baseline value.
Abstract:
A method, apparatus, and system for adhering a vacuum to a surface is provided. A seal is positioned relative to a surface. The seal is associated with a structure and is in communication with a channel within the structure. The seal is rotated relative to the structure such that the seal at least partially conforms to the surface. Air is drawn into the channel within the structure through the seal such that the seal adheres to the surface.
Abstract:
An aircraft inspection system is configured to inspect one or more components of an aircraft before a flight. The aircraft inspection system includes an inspection robot that is configured to inspect the component(s) of the aircraft. The inspection robot includes a conveying sub-system that is configured to efficiently move the inspection robot to different locations, and a sensing sub-system including one or more sensors that are configured to sense one or more characteristics of the component(s) during an inspection. The sensing sub-system is configured to record the characteristic(s) as inspection data.
Abstract:
Prior to curing a composite workpiece assembly, an expandable element can be inserted into a cavity of the workpiece assembly. The expandable element is configured to expand when a predetermined change is produced in an attribute of the element. The attribute can be a temperature of the element. The element is expanded by producing the predetermined change, and the workpiece assembly is cured while the expanded element is in the cavity, so that the expanded element applies positive pressure to inner surfaces of the cavity during curing. The expanded element can be removed from the cavity after curing. The expanded element can comprise a plurality of expandable pellets.
Abstract:
A system includes a structure and a material applied to a portion of the structure. The material may be adapted to change color locally in response to localized heating of the portion of the structure to a first threshold temperature due to an electrical current within the structure. The system may further include a detector configured to receive light from the structure to enable detection of a pathway of the electrical current through the structure based on a position of the color.
Abstract:
A portable x-ray backscattering imaging system for creating a backscatter image representing an object is disclosed. The portable x-ray backscattering imaging system may include a drum, a radioactive source, a plurality of backscatter detectors, and a portable exterior shield. The drum may be rotatable about an axis of rotation at a rotational speed. The radioactive source may be connected to the drum and configured to generate x-rays. The plurality of backscatter detectors may be configured to detect backscattering radiation created as the x-rays generated by the radioactive source scatter back from the object. The portable exterior shield may enclose the drum. The exterior shield may be constructed of a material that substantially blocks the x-rays and defines a window that allows for the x-rays to pass through.
Abstract:
A joint assembly is provided. The joint assembly includes a first component and a second component that includes a first portion and a plurality of flexible members extending therefrom for coupling the second component to the first component. The plurality of flexible members are preloaded in a predetermined direction and are configured to flex in a direction opposite to the predetermined direction when coupling the second component to the first component.
Abstract:
An aircraft inspection system is configured to inspect one or more components of an aircraft before a flight. The aircraft inspection system includes an inspection robot that is configured to inspect the component(s) of the aircraft. The inspection robot includes a conveying sub-system that is configured to efficiently move the inspection robot to different locations, and a sensing sub-system including one or more sensors that are configured to sense one or more characteristics of the component(s) during an inspection. The sensing sub-system is configured to record the characteristic(s) as inspection data.
Abstract:
A method of monitoring a thermal protection system coupled to a structural component is provided. The thermal protection system includes a thermally insulative body and at least one layer of thermochromatic material applied thereon such that the at least one layer is positioned between the thermally insulative body and the structural component. The method includes determining a value of a thermochromatic property of the at least one layer of thermochromatic material, wherein the value of the thermochromatic property is responsive to an amount of heat applied to the at least one layer of thermochromatic material, comparing the value to a baseline value of the thermochromatic property, and determining degradation of the thermal protection system when the value of the thermochromatic property deviates from the baseline value.