Abstract:
A receptacle connector is provided for a wearable article. The receptacle connector includes a housing having a receptacle configured to receive a complementary plug connector therein. The housing is configured to be mounted to the wearable article. A printed circuit board is held by the housing. The printed circuit board includes mating contacts for mating with the plug connector. The printed circuit board includes mounting contacts that are configured to terminate conductors of a flat cable of the wearable article or an e-textile of the wearable article.
Abstract:
A connector system includes a cavity configured to hold a connector module. The cartridge has a port opening to the cavity. The cartridge removably receives the connector module through the port. The connector system also includes an ejector mechanism. The ejector mechanism has a slider latch movable in a longitudinal direction relative to the cartridge. The slider latch has a profiled groove configured to cam therein. The slider latch has a linear gear. The ejector mechanism includes a rotatable handle having a circular gear configured to engage the linear gear to cause the slider latch to move as the rotatable handle is rotated between a closed position and an open position. The profiled groove engages the cam to secure the connector module to the connector assembly when the rotatable handle is in the closed position and unlock the connector module when in the open position.
Abstract:
Configurable guide hardware is provided for aligning two associated connectors that are mounted on different circuit cards. The guide hardware includes a guide receptacle that is mounted to one of the circuit cards. The guide receptacle includes a housing that defines a channel and a keyway ring that is held in the channel. The guide receptacle is configured to receive a pin of a guide plug in the channel through a central opening of the keyway ring. The keyway ring includes a receptacle keying feature along an inner perimeter. The keyway ring is selectively positionable to locate the receptacle keying feature in multiple pre-defined angular orientations relative to the housing. The pin of the guide plug may also be selectively positionable in multiple pre-defined angular orientations.
Abstract:
A coaxial connector includes a housing configured to be mounted to an edge of a circuit board, and coaxial contacts held by the housing. The coaxial contacts include coaxial contact pairs having a signal contact and a ground contact arranged coaxially with the signal contact of the same coaxial contact pair. The signal contacts are held by the housing such that signal mounting segments of the signal contacts are configured to extend over and be engaged in electrical contact with corresponding electrical signal traces of the circuit board when the housing is mounted to the edge of the circuit board. The ground contacts are held by the housing such that ground mounting segments of the ground contacts are configured to extend over and be engaged in electrical contact with corresponding electrical ground traces of the circuit board when the housing is mounted to the edge of the circuit board.
Abstract:
A connector system includes a base mount and a slider latch received in the base mount. The slider latch has a profiled groove configured to latchably receive a cam of a connector module. A faceplate is coupled to the base mount. The faceplate has an opening providing access to the slider latch. An ejector button is operatively coupled to the slider latch to move the slider latch from a latched position to an unlatched position. The slider latch is configured to eject the connector module as the slider latch moves between the latched and unlatched positions. A spring engages the slider latch and acts on the slider latch in a biasing direction. The spring forces the slider latch to return to the latched position after the ejector button is released.
Abstract:
Configurable guide hardware is provided for aligning two associated connectors that are mounted on different circuit cards. The guide hardware includes a guide receptacle that is mounted to one of the circuit cards. The guide receptacle includes a housing that defines a channel and a keyway ring that is held in the channel. The guide receptacle is configured to receive a pin of a guide plug in the channel through a central opening of the keyway ring. The keyway ring includes a receptacle keying feature along an inner perimeter. The keyway ring is selectively positionable to locate the receptacle keying feature in multiple pre-defined angular orientations relative to the housing. The pin of the guide plug may also be selectively positionable in multiple pre-defined angular orientations.
Abstract:
A wearable connector includes a housing having a base and a shroud that extends from the base. The shroud includes a tunnel having an open end and an interior surface. The open end of the tunnel is configured to receive a mating connector therein. The base is configured to be mounted to a wearable article. Terminals are held directly by the shroud such that mating segments of the terminals extend at least one of directly on or through the interior surface of the tunnel. The tunnel of the shroud is configured to receive the mating connector into the tunnel through the open end such that the mating segments of the terminals mate with mating terminals of the mating connector within the tunnel.
Abstract:
An electrical connector includes a contact holder holding a plurality of contacts and a housing having a chamber holding the contact holder. The housing has a latch pocket along a first side of the housing and a guide pin positioned at or near a second side of the housing. The guide pin has a groove therein. A primary latch is received in the latch pocket and has a deflectable latching beam at a distal end thereof. The latching beam is configured for latching engagement with the mating connector for latching of the first side of the housing to the mating connector. The guide pin is configured to guide mating of the electrical connector with the mating connector. The groove is configured to receive a secondary latch of the mating connector to facilitate latching of the second side of the housing to the mating connector.
Abstract:
Protective cover including a mating cap having a cap body. The cap body includes a connector cavity that opens in a loading direction. The connector cavity is configured to receive an electrical connector of a communication system when the mating cap is moved in a loading direction onto the electrical connector. The cap body is configured to surround a mating interface of the electrical connector. The protective cover also includes a movable latch that is coupled to the mating cap and extends in a rearward direction that is generally opposite the loading direction. The movable latch has a side surface and a latch projection that extends laterally from the side surface. The movable latch is configured to flex relative to the mating cap to move the latch projection. The latch projection is configured to engage the communication system to block the protective cover from being inadvertently removed.
Abstract:
An electrical connector is provided for terminating a plurality of electrical conductors. The electrical connector includes a terminal subassembly having terminals configured to be electrically connected to the electrical conductors. The terminal subassembly has an insulator holding the terminals. The terminal subassembly has a mating interface where mating surfaces of the terminals mate with a mating connector. The mating interface of the terminal subassembly is approximately flat. The electrical connector also includes a metal shell holding the terminal subassembly. The metal shell has the cross-sectional shape of an oval.