Abstract:
An RF connector system includes receptacle and plug connector assemblies. The receptacle connector assembly includes a receptacle housing configured to be mounted to a circuit board and a mounting end and having connector cavities and side openings open to corresponding connector cavities. RF receptacle connectors are side-loaded into the connector cavities through corresponding side openings. The RF receptacle connectors have solder tails soldered to the circuit board. The plug connector assembly has a plug housing including connector cavities and RF plug connectors received in corresponding connector cavities and mated with a corresponding RF receptacle connectors. The RF plug connectors are terminated to center conductors of coaxial cables.
Abstract:
A connector assembly is provided comprising, a conductive shell extending between a mating end and a back end opposite the mating end. The shell being generally cylindrical and extending along a longitudinal axis. The shell having a chamber forward of a base and being open at the mating end for receiving the mating connector. The base having an insulator pocket aligned with the longitudinal axis and extending between the chamber and the back end. And a center pin received in the pocket and extending through the base along the longitudinal axis into the chamber for mating with the mating connector. The center pin having a terminating end extending from the back end. And an insulator formed in place in the pocket around the center pin to electrically isolate the center pin from the shell. The insulator maintaining a position of the center pin along the longitudinal axis.
Abstract:
A coaxial connector includes a housing configured to be mounted to an edge of a circuit board, and coaxial contacts held by the housing. The coaxial contacts include coaxial contact pairs having a signal contact and a ground contact arranged coaxially with the signal contact of the same coaxial contact pair. The signal contacts are held by the housing such that signal mounting segments of the signal contacts are configured to extend over and be engaged in electrical contact with corresponding electrical signal traces of the circuit board when the housing is mounted to the edge of the circuit board. The ground contacts are held by the housing such that ground mounting segments of the ground contacts are configured to extend over and be engaged in electrical contact with corresponding electrical ground traces of the circuit board when the housing is mounted to the edge of the circuit board.
Abstract:
A connector system includes a cavity configured to hold a connector module. The cartridge has a port opening to the cavity. The cartridge removably receives the connector module through the port. The connector system also includes an ejector mechanism. The ejector mechanism has a slider latch movable in a longitudinal direction relative to the cartridge. The slider latch has a profiled groove configured to cam therein. The slider latch has a linear gear. The ejector mechanism includes a rotatable handle having a circular gear configured to engage the linear gear to cause the slider latch to move as the rotatable handle is rotated between a closed position and an open position. The profiled groove engages the cam to secure the connector module to the connector assembly when the rotatable handle is in the closed position and unlock the connector module when in the open position.
Abstract:
A wearable connector includes a housing having a base and a shroud that extends from the base. The shroud includes a tunnel having an open end and an interior surface. The open end of the tunnel is configured to receive a mating connector therein. The base is configured to be mounted to a wearable article. Terminals are held directly by the shroud such that mating segments of the terminals extend at least one of directly on or through the interior surface of the tunnel. The tunnel of the shroud is configured to receive the mating connector into the tunnel through the open end such that the mating segments of the terminals mate with mating terminals of the mating connector within the tunnel.
Abstract:
A connector assembly is provided comprising, a conductive shell extending between a mating end and a back end opposite the mating end. The shell being generally cylindrical and extending along a longitudinal axis. The shell having a chamber forward of a base and being open at the mating end for receiving the mating connector. The base having an insulator pocket aligned with the longitudinal axis and extending between the chamber and the back end. And a center pin received in the pocket and extending through the base along the longitudinal axis into the chamber for mating with the mating connector. The center pin having a terminating end extending from the back end. And an insulator formed in place in the pocket around the center pin to electrically isolate the center pin from the shell. The insulator maintaining a position of the center pin along the longitudinal axis.
Abstract:
Coaxial connector assembly includes a connector module having a connector body and a plurality of coaxial contacts. The coaxial connector assembly also includes a mounting frame having a mating side and a mounting side that face in opposite directions. The mounting side faces in a mounting direction along the mating axis and is configured to interface with a support wall. The mounting frame defines a passage that extends through the mating and mounting sides. The passage includes a connector-receiving recess that opens to the mounting side and is defined by blocking surfaces. The blocking surfaces include a first blocking surface that faces in a lateral direction that is perpendicular to the mating axis and a second blocking surface that faces in the mounting direction. The first and second blocking surfaces are sized and shaped relative to the connector module to permit the connector module to float.
Abstract:
Protective cover including a mating cap having a cap body. The cap body includes a connector cavity that opens in a loading direction. The connector cavity is configured to receive an electrical connector of a communication system when the mating cap is moved in a loading direction onto the electrical connector. The cap body is configured to surround a mating interface of the electrical connector. The protective cover also includes a movable latch that is coupled to the mating cap and extends in a rearward direction that is generally opposite the loading direction. The movable latch has a side surface and a latch projection that extends laterally from the side surface. The movable latch is configured to flex relative to the mating cap to move the latch projection. The latch projection is configured to engage the communication system to block the protective cover from being inadvertently removed.
Abstract:
A connector system includes a cartridge having at least one cavity configured to hold connector modules therein. The connector system also includes at least one slider latch housed in the cartridge. The at least one slider latch is movable in a longitudinal direction and has at least one groove configured to receive a cam of a corresponding connector module to secure the connector modules to the cartridge. The at least one slider latch has a biasing member operably coupled thereto. The biasing member biases the slider latch in a biasing direction. The biasing member forces the at least one slider latch to return to a latched position after the cam is received in the profiled groove. The connector system also includes a discharge mechanism configured to move a discharge slider.
Abstract:
An electrical contact is provided for mating with a mating contact. The electrical contact includes a base extending a length along a central longitudinal axis, and an arm extending a length outward from the base along the central longitudinal of the base. The arm includes a first mating bump and a second mating bump. The first and second mating bumps have respective first and second mating surfaces. The arm is configured to engage the mating contact at each of the first and second mating surfaces to establish an electrical connection with the mating contact. The first mating surface of the first mating bump is spaced apart along the length of the arm from the second mating surface of the second mating bump.