Abstract:
A surface-type illumination device suitable for providing backlight in a liquid crystal display is disclosed. For example, an L-shaped fluorescent light can be used as an illuminant and mounted next to two edges of a substantially rectangular light guide plate. The corner of an edge portion between the two edges is removed. The fluorescent light, the length of whose illuminating portion is long, is positioned with an appropriate gap from the light guide plate allowing for illumination with high brightness and low power consumption. Consequently, when the illumination device is used in a color liquid crystal display, appropriate backlight with high brightness can be obtained. Moreover, because the influence of the temperature from the illumination device is small, a stable color display can be achieved.
Abstract:
A background lighting apparatus includes a light entering edge surface around substantially the entire periphery of a highly specular transparent plate wherein light beams enter from peripheral light sources and travel toward the central portion of the plate and are dispersed and diffused by a diffusion system formed relative to the transparent plate. Uniformity of luminance provided from the background lighting apparatus is enhanced as a whole by increasing the incident quality of the input light beams into the transparent plate while easing the incident directivity of the light beams on the transparent plate with the overall substantial enhancement of luminance produced from the apparatus. Further, the temperature distribution on a liquid crystal panel positioned adjacent to the output surface of the background lighting apparatus is substantially uniform across the panel so that the transmission quality of the liquid crystal material, which is dependent upon ambient temperatures, is made substantially more uniform resulting in significantly higher levels of uniformity in luminance across the display as well as uniformity of displayed colors and gradations thereof emanating from the display panel.
Abstract:
A pixel structure is provided in which a functional thin film having a uniform thickness can be formed in a pixel region, and an electro-optic device is obtained having superior uniformity of light brightness by the use of the above pixel structure. The functional thin film is formed on a thin film-forming surface surrounded by a partition for defining the pixel region. In this step, since the partition described above is formed of a first partition having a lyophilic surface and a second partition which is provided thereon and which has a lyophobic surface, and the first partition has parts which are not covered with the second partition, a liquid material for forming the functional thin film, which is filled inside the partition, can be formed into a film having a uniform thickness after drying due to the interaction between the lyophilic and the lyophobic properties.
Abstract:
To provide an organic electroluminescent device and a method of manufacturing the same, in which the organic electroluminescent device has an organic functional layer formed by a liquid phase method, the organic functional layer formed in a uniform thickness while maintaining an aperture ratio, thereby obtaining a uniform and high efficient emission. According to an organic EL device of the present invention, an organic EL element having an organic functional layer interposed between a pixel electrode and a common electrode is arranged on a substrate, and the organic functional layer is arranged in a region surrounded by a bank arranged along the periphery of the pixel electrode, and-at the same time, a hole injection layer and a light-emitting layer are stacked at the pixel electrode. A convex portion protruded at the hole injection layer is arranged on the pixel electrode and a part of the hole injection layer is interposed between the convex portion and the light-emitting layer.
Abstract:
A surface-type illumination device suitable for providing backlight in a liquid crystal display is disclosed. For example, an L-shaped fluorescent light can be used as an illuminant and mounted next to two edges of a substantially rectangular light guide plate. The corner of an edge portion between the two edges is removed. The fluorescent light, the length of whose illuminating portion is long, is positioned with an appropriate gap from the light guide plate allowing for illumination with high brightness and low power consumption. Consequently, when the illumination device is used in a color liquid crystal display, appropriate backlight with high brightness can be obtained. Moreover, because the influence of the temperature from the illumination device is small, a stable color display can be achieved.
Abstract:
A pixel structure is provided in which a functional thin film having a uniform thickness can be formed in a pixel region, and an electro-optic device is obtained having superior uniformity of light brightness by the use of the above pixel structure. The functional thin film is formed on a thin film-forming surface surrounded by a partition for defining the pixel region. In this step, since the partition described above is formed of a first partition having a lyophilic surface and a second partition which is provided thereon and which has a lyophobic surface, and the first partition has parts which are not covered with the second partition, a liquid material for forming the functional thin film, which is filled inside the partition, can be formed into a film having a uniform thickness after drying due to the interaction between the lyophilic and the lyophobic properties.
Abstract:
A composite lighting device is provided, which is inexpensive and has high uniformity in brightness, in which light emitted from an end face of a backlight having an organic EL device is used to illuminate input buttons and the like. The lighting device includes a transparent substrate having one principal plane on which a transparent electrode film, a luminescent layer, and a reflective electrode film are at least formed. In the lighting device, a liquid crystal display unit is adjacently disposed on the other principal plane, and a light-guide element is adjacent to an end face of the substrate, so that input buttons embedded into the light-guide element are illuminated.
Abstract:
An illumination device is provided of the type arranged at the front which is of low power consumption and of high recognisability both when the illumination is turned on and when illumination is turned off. An illumination device arranged at the front face of an illuminated object has a light-guide plate forming a transparent flat plate shape and formed with point-form optical extraction structures on its surface or in a position facing this surface, and a light source arranged opposite and end face of this light-guide plate. The light source is for example a point light source. The optical extraction structures are for example pillar-shaped projections and these are arranged two-dimensionally. The function is provided that, when this illumination device is arranged at the front of the illuminated body, rays are projected on to the illuminated body and rays reflected by the illuminated body are transmitted with scarcely any dispersion. There is also provided a function of transmitting external light with scarcely any dispersion of rays reflected by the illuminated body when the illumination is not turned on. A point light source such as a light emitting diode (LED) or electric light bulb can be employed and low power consumption can easily be achieved.
Abstract:
The invention provides a linear organic electroluminescent light source which is high in brightness and capable of realizing white color. A brighter light source can be obtained compared with a light source having only one organic electroluminescent element by forming the organic electroluminescent element to have at least one organic layer, which emits light, on both sides of a transparent substrate, and covering the transparent substrate with a mirror which is high in reflectance except one end face of the transparent substrate. When the same brightness as that of a light source having one element is obtained, the power consumption can be suppressed. The light source can thus emit white light.
Abstract:
A cost-effective and simple construction of an easy to see and bright digitizer tablet with a two-dimensional illuminating function having a light source for radiating a bundle of light, and light-guide means having a light entering face into which said bundle of light enters, which guides said bundle of light towards the light-emitting face, to illuminate the illuminated body. A liquid crystal display device including this digitizer tablet is also provided. The light-guide contains a flat, transparent light-guide body with a face vertical to said light entering face as said light-emitting face, wherein a protrusion made of a substantially parallel bottom face and a substantially perpendicular side face to said light-emitting face is formed integrally with said light-emitting face. The protrusion may also be formed of a plurality of rib-shaped protruding bodies. The ratio between the width and height of each of these protruding bodies is roughly 1:1.