Abstract:
In one aspect, methods of making a carbon coating are described herein. In some implementations, a method of making a carbon coating comprises applying a first adhesive material to a substrate surface to provide an adhesive surface; rolling a carbon source over the adhesive surface to provide a carbon layer on the adhesive surface; and rolling an adhesive roller over the carbon layer to remove some but not all of the carbon of the carbon layer to provide the carbon coating.
Abstract:
In one aspect, methods of coating a surface with carbon are described herein. In some implementations, a method of coating a surface with carbon comprises electrically charging carbon particles; directing the charged carbon particles toward an electrically charged surface; and contacting the charged carbon particles with the electrically charged surface. In some implementations, the method further comprises forming a coating of physisorbed carbon particles on the surface.
Abstract:
In one aspect, methods of making a carbon coating are described herein. In some implementations, a method of making a carbon coating comprises applying a first adhesive material to a substrate surface to provide an adhesive surface; rolling a carbon source over the adhesive surface to provide a carbon layer on the adhesive surface; and rolling an adhesive roller over the carbon layer to remove some but not all of the carbon of the carbon layer to provide the carbon coating.
Abstract:
A method may include generating one or more control signals configured to control a velocity of an image sensing system based on a rate of recording pixels frames in the image sensing system. In some embodiments, the method may alternatively or additionally include generating one or more control signals configured to control the rate of recording in the image sensing system based on the velocity of the image sensing system. In some embodiments, a portion of image pixel data for a pixel frame may be output for transmission to a remote receiver. In some embodiments, the output data may include a recently recorded image data pixel for those surface resolution cells for which there is no currently stored reference image data pixel of a previously recorded pixel frame that is the same or is different by less than a threshold amount as the recently recorded image data pixel.
Abstract:
In one aspect, touch screens are described herein. In some implementations, a touch screen comprises an electrically conductive layer and one or more electrodes electrically connected to the electrically conductive layer, wherein the electrically conductive layer comprises a graphene layer. In some implementations, the electrically conductive layer comprises an electrically conductive coating disposed on an electrically insulating substrate.
Abstract:
A method and apparatus for transmitting secure data packets through a node network. Unsecure data packets are received at a set of unsecure inputs and secure data packets are received at a number of secure inputs in a node in the node network. The secure data packets are authorized to be sent to a number of secure destination devices. The unsecure data packets are not authorized to be sent to the number of secure destination devices. The secure data packets and the unsecure data packets are integrated to form a number of output data streams based on a predetermined schedule. The number of output data streams is sent to a number of next nodes in the node network.
Abstract:
A system that comprises a quantum key device configured to generate quantum information and transmit the quantum information over a first and second quantum communication channel. The system also comprises a first device, communicatively coupled to the quantum key device over the first quantum communication channel, and a second device, communicatively coupled to the quantum key device over the second quantum communication channel. The system further comprises an encryption module configured to encrypt data to create encrypted data, at the first device, using a first quantum encryption key. The system also comprises a decryption module configured to decrypt the encrypted data to create decrypted data, at the second device, using a second quantum encryption key. The first quantum encryption key is the same as the second quantum encryption key. The system further comprises a termination module configured to prevent access to the decrypted data after a predetermined period of time.
Abstract:
Various techniques provide systems and methods for facilitating iterative key generation and data encryption and decryption. In one example, a method includes encrypting, by an encryption logic circuit, a current data portion of plaintext data using a current encryption key to provide an encrypted current data portion. The method further includes generating, by the encryption logic circuit, a next encryption key for encryption of a next data portion of the plaintext data based on the current encryption key. Related methods and devices are also provided.
Abstract:
A system that comprises a quantum key device configured to generate quantum information and transmit the quantum information over a first and second quantum communication channel. The system also comprises a first device, communicatively coupled to the quantum key device over the first quantum communication channel, and a second device, communicatively coupled to the quantum key device over the second quantum communication channel. The system further comprises an encryption module configured to encrypt data to create encrypted data, at the first device, using a first quantum encryption key. The system also comprises a decryption module configured to decrypt the encrypted data to create decrypted data, at the second device, using a second quantum encryption key. The first quantum encryption key is the same as the second quantum encryption key. The system further comprises a termination module configured to prevent access to the decrypted data after a predetermined period of time.
Abstract:
A method for securely communicating digital content includes steps of: (1) receiving data from a plurality of key sources; (2) retrieving a plurality of data sets from the data, each one of the plurality of data sets comprising a plurality of data units; (3) extracting a plurality of selected data units from the plurality of data units; (4) generating a custom key using the plurality of selected data units; (5) encrypting content using the custom key; and (6) transmitting encrypted content.