Abstract:
The present invention relates to compounds represented by the following Formula (II), Ring-A of Formula II can be, for example, an aryl group, and Q′ and Q′″ can each be independently selected from groups, such as, halogen, —OH, —CN, amine groups, amide groups, carboxylic acid ester groups, carboxylic acid groups, alkenyl groups, alkynyl groups, carbonate groups, sulfide groups, and sulfonic acid ester groups. The present invention also relates to photochromic compositions and photochromic articles that include one or more photochromic compounds such as represented by Formula II.
Abstract:
A method of making an optical article having a gradient tint and a gradient polarization. The method includes contacting one or more dye compositions including at least one of a dichroic dye, a photochromic-dichroic dye, or any combination thereof, with an optical element having a continuous coating including at least one alignment zone. At least a portion of the dye composition diffuses into the coating at a predetermined concentration gradient along at least a portion of the coating.
Abstract:
The present invention relates to an optical article that includes, a mark that is positioned on and/or within the first surface of an optical substrate thereof, and a photochromic layer that includes at least one photochromic compound and which resides over at least a portion of the first surface. The mark includes a photoluminescent material. The first surface of the optical substrate is exposed to a source of actinic radiation, the photochromic compound has an activation time after exposure to the source of actinic radiation, and the mark luminesces and is visually observable during at least a portion of the activation time. The present invention also relates to: an optical article that includes, a mark that is positioned within the first surface of an optical substrate thereof, and at least one photochromic compound that is also positioned within the first surface; and methods of making such optical articles.
Abstract:
The present invention relates to polymers that include residues of at least one monomer represented by the following Formula (I). With reference to Formula (I), at least one of E1 and E2 independently is, or is independently substituted with, at least one reactive group, such as a (meth)acryloyl group. Monomers represented by Formula (I) and monomer residues thereof have alignment properties, such as photoalignment properties. The present invention also relates to alignment layers that include such polymers, and articles of manufacture, such as optical elements, that include one or more such alignment layers.
Abstract:
The present invention relates to an optical article that includes, a mark that is positioned on and/or within the first surface of an optical substrate thereof, and a photochromic layer that includes at least one photochromic compound and which resides over at least a portion of the first surface. The mark includes a photoluminescent material. The first surface of the optical sub-strate is exposed to a source of actinic radiation, the photochromic compound has an activation time after exposure to the source of actinic radiation, and the mark luminesces and is visually observable during at least a portion of the activation time. The present invention also relates to: an optical article that includes, a mark that is positioned within the first surface of an optical substrate thereof, and at least one photochromic compound that is also positioned within the first surface; and methods of making such optical articles.
Abstract:
The present invention relates to methods of making fused ring compounds, such as indeno-fused naphthols, and fused ring indenopyran compounds, such as indeno-fused naphthopyrans, that each employ an unsaturated compound represented by the following Formula II. Referring to the unsaturated compound of Formula II: Ring-A can be selected from optionally substituted aryl (e.g., phenyl); m can be, for example, from 0 to 4; R1 for each m can be selected from optionally substituted hydrocarbyl (e.g., C1-C6 alkyl) optionally interrupted with at least one linking group (e.g., —O—); and R3 and R16 can each be independently selected from, for example, hydrogen or optionally substituted hydrocarbyl, such as C1-C8 alkyl. When Ring-A is a phenyl group, the unsaturated compound represented by Formula II can be referred to as an unsaturated indanone acid/ester compound, or an indenone acid/ester compound (depending on whether R16 is hydrogen, or an optionally substituted hydrocarbyl group).
Abstract:
The present invention relates to methods of preparing fused ring indeno compounds that involves reacting together a dienophile and a lactone compound, in the presence of a catalyst, and a carboxylic acid anhydride. With some embodiments, the fused ring indeno compound is represented by the following Formula (I-A), the dienophile is represented by the following Formula (II-A), and the lactone compound is represented by the following Formula (III-A):
Abstract:
The present invention relates to photochromic indeno-fused ring pyran compounds represented by the following Formula (I-A): The present invention also relates to photochromic dichroic compounds, such as represented by Formula (I-A), in which (i) Z2 is a group N—R13 in which R13 is a group L, and (ii) optionally at least one R1 independently for each n is selected from a group L, in which the group L independently in each case is a lengthening group that provides the photochromic compound with dichroic properties, in accordance with some embodiments. The present invention also relates to photochromic articles, such as photochromic ophthalmic articles, that include one or more photochromic compounds according to the present invention, such as represented by Formula (I-A).
Abstract:
The present invention relates to intermediate compounds represented by the following Formula (I-A), The intermediate compounds of the present invention, such as represented by Formula (I-A), can be used to prepare photochromic compounds, such as photochromic fused ring indenopyran compounds, including but not limited to photochromic fused ring indeno-naphtho-pyran compounds.
Abstract:
The present invention relates to photochromic articles that include a substrate and at least one photochromic material that is adapted to change from an unactivated form to an activated form by exposure to radiation substantially in the wavelength range from 380 to 450 nanometers when measured over a range of from 380 to 700 nanometers. The photochromic article is also adapted to retain at least 12 percent of the delta OD measured in the Outdoor Test when tested in the Behind the Windshield Test. The photochromic material can be selected from certain compounds including, for example, fluoranthenoxazines, naphthopyrans, phenanthropyrans, fluoranthenopyrans, and indenonaphthopyrans, which each have bonded thereto at least one chiral or achiral lengthening group that provides the photochromic compound with dichroic properties. The present invention also relates to methods of forming a photochromic article.