Abstract:
A method of joining polymer components includes additively manufacturing first and second mating features on first and second polymer components such that a mechanical lock is created through undercut geometric features of an adhesive material when the polymer components are joined. Adhesive is added between the mating components to strengthen the joint.
Abstract:
An apparatus includes first, second, and third layers. The first layer includes a plurality of flanges. The second layer includes a deformable membrane. The second layer is connected to the first layer along a first major surface of the deformable membrane. The third layer is connected to the second layer along a second major surface of the deformable membrane opposite the first major surface. The third layer includes a first series of internal structures.
Abstract:
A tool includes a head that extends form the flexible section, an emitter within the head; and a nozzle to eject a cooling fluid therefrom. A method of additively manufacturing a component including delivering series of thermal shocks to a conglomerated powder within an internal passage of an additively manufactured component to facilitate removal of the conglomerated powder.
Abstract:
A method of forming a metal component with two and three dimensional internal functionally graded alloy composition gradients includes forming the component by a powder based layer-by-layer additive manufacturing process. The areal composition distribution of each powder layer is determined by simultaneously depositing different powders and powder mixtures through a mixing valve attached to a single nozzle during powder deposition. The layers are then sintered with a directed energy source to form a forging preform. The preform is then forged to form a component.
Abstract:
A system for dispersing a catalyst in a fuel includes a first reservoir containing the fuel, and a second reservoir including an agitator and containing a quantity of the catalyst suspended in the fuel. The system also includes a first conduit extending from the first reservoir, a second conduit extending from the second reservoir, and a mixing nozzle connected to the first conduit and the second conduit. The mixing nozzle includes a first meter positioned within the first conduit, a second meter positioned within the second conduit, a valve positioned upstream from the second meter within the second conduit, a junction in flow communication with the first conduit and the second conduit, a mixer downstream from the junction, a sensor positioned between the mixer and an outlet; and a controller connected to the valve and the first and second meters, the controller receiving feedback from the sensor.
Abstract:
A thin-walled heat exchanger includes a component having at least one thermal transfer structure. The thermal transfer structure includes a wall having a thickness ranging from about 0.003 in to about 0.010 in.
Abstract:
A method of forming a reinforced polymeric component includes securing a plurality of pins within a mold and wrapping reinforcing fibers around the pins to form a web of reinforcing fibers. The web of reinforcing fibers has a plurality of layers. The method of forming a reinforced polymeric component further includes adding a polymer to the mold and processing the polymer to form a molded polymeric component that contains the pins and the web of reinforcing fibers. A reinforced polymeric component includes a web of reinforcing fibers wrapped around a plurality of pins. The web of reinforcing fibers includes a plurality of layers. The reinforced polymeric component further includes a molded and processed polymer containing the web of reinforcing fibers and pins.
Abstract:
A method of making a part including a solid portion with an internal passage includes building the part using an additive manufacturing process that builds the part on a layer-by-layer basis. The solid portion of the part is formed. Forming the solid portion includes fusing the solid portion. A solid core is formed within at least a portion of the internal passage. Forming the solid core includes fusing the solid core and forming an attachment feature on the solid core. Material that is not fused, either semi-sintered or un-sintered, is positioned between the solid portion and the solid core. At least a tensile, compressive, vibratory, or torsional force is applied to the solid core at the attachment feature. The solid core is then removed from the part.
Abstract:
A heat exchanger article includes a hollow tube that has a tube wall with an interior surface and an exterior surface. The interior surface defines a flow passage through the hollow tube. The hollow tube also includes a vane cluster in the flow passage. The vane cluster includes a plurality of vanes and each of the vanes extends inwardly from the tube wall.
Abstract:
A ceramic component retention system includes a metallic component, a ceramic component, and at least one spring element arranged between the metallic component and the ceramic component. The metallic component has a first coefficient of thermal expansion, and the ceramic component has a second coefficient of thermal expansion. The at least one spring element is configured to mechanically couple the ceramic component to the metallic component.