Abstract:
A process is provided for additively manufacturing at least one part. The processing includes depositing a substantially uniform layer of material over at least a portion of a support surface using a belt that contacts the material. The process also includes solidifying at least a portion of the layer of material using a solidification device to form at least a portion of the part.
Abstract:
A method is provided involving an additive manufacturing system. This method includes a step of forming a first fluid conduit using the additive manufacturing system. The method also includes a step of providing a fluid coupling. The fluid coupling includes the first fluid conduit and a second fluid conduit. The first fluid conduit is connected to and fluidly coupled with the second fluid conduit. The first fluid conduit has a first configuration. The second fluid conduit has a second configuration that is different than the first configuration.
Abstract:
A method of forming a reinforced polymeric component includes securing a plurality of pins within a mold and wrapping reinforcing fibers around the pins to form a web of reinforcing fibers. The web of reinforcing fibers has a plurality of layers. The method of forming a reinforced polymeric component further includes adding a polymer to the mold and processing the polymer to form a molded polymeric component that contains the pins and the web of reinforcing fibers. A reinforced polymeric component includes a web of reinforcing fibers wrapped around a plurality of pins. The web of reinforcing fibers includes a plurality of layers. The reinforced polymeric component further includes a molded and processed polymer containing the web of reinforcing fibers and pins.
Abstract:
A method is provided involving an additive manufacturing system. This method includes a step of forming a first fluid conduit using the additive manufacturing system. The method also includes a step of providing a fluid coupling. The fluid coupling includes the first fluid conduit and a second fluid conduit. The first fluid conduit is connected to and fluidly coupled with the second fluid conduit. The first fluid conduit has a first configuration. The second fluid conduit has a second configuration that is different than the first configuration.
Abstract:
A method of forming a metal component with two and three dimensional internal functionally graded alloy composition gradients includes forming the component by a powder based layer-by-layer additive manufacturing process. The areal composition distribution of each powder layer is determined by simultaneously depositing different powders and powder mixtures through a mixing valve attached to a single nozzle during powder deposition. The layers are then sintered with a directed energy source to form a forging preform. The preform is then forged to form a component.
Abstract:
An assembly is provided for a turbine engine. The assembly includes a fuel injector and a fuel vaporizer. A nozzle of the fuel injector is adapted to direct fuel to impinge against the fuel vaporizer. The fuel vaporizer is adapted to substantially vaporize the impinging fuel.
Abstract:
The present disclosure relates to an aircraft brush seal comprising a first brush seal member and a second brush seal member comprising a channel that receives a plurality of interwoven brush fibers. The interwoven brush fibers may be coupled to the first brush seal member and/or may extend into the second brush seal member. The interwoven brush fibers may not couple to the second brush seal member and/or may form an air seal. The air seal may be formed between a first air compartment and a second air compartment.
Abstract:
The present disclosure relates to systems for controlling movement of a divergent flap (24) in an exhaust nozzle (20). A nozzle flap assembly may include a first link (42) pivotably coupled to a divergent flap (24). A second link (40) may be pivotably coupled to the first link and a static portion (44) of the exhaust nozzle. The second link may comprise a bumper (50). The first link may be configured to contact the bumper in response to the divergent flap being in a high thrust mode. The second link may be configured to contact the divergent flap in response to the divergent flap being in a low thrust mode.
Abstract:
A method is provided involving an additive manufacturing system. This method includes a step of forming a first fluid conduit using the additive manufacturing system. The method also includes a step of providing a fluid coupling. The fluid coupling includes the first fluid conduit and a second fluid conduit. The first fluid conduit is connected to and fluidly coupled with the second fluid conduit. The first fluid conduit has a first configuration. The second fluid conduit has a second configuration that is different than the first configuration.
Abstract:
A method of monitoring the residual stress in surface and near surface regions of a component includes identifying predetermined locations on the surface of a component that are expected to experience high stress during normal operating conditions of the component. Marker particles are introduced into the component during additive manufacture of the component at the predetermined locations. Then, the residual stress of the component is measured at a location corresponding with the marker material using x-ray techniques.