Abstract:
A method of monitoring the residual stress in surface and near surface regions of a component includes identifying predetermined locations on the surface of a component that are expected to experience high stress during normal operating conditions of the component. Marker particles are introduced into the component during additive manufacture of the component at the predetermined locations. Then, the residual stress of the component is measured at a location corresponding with the marker material using x-ray techniques.
Abstract:
A method includes designing a part. The part includes at least one internal structure. The internal structure is designed to provide strain mitigation, energy dissipation, or impact resistance for the part during an emergency condition. The part is built by a layer-by-layer additive manufacturing process. While building the part, the internal structure is connected to the part.
Abstract:
An example multi-dimensional component building system includes a first chamber having at least one base disposed therein, a second chamber adjacent to and in fluid communication with the first chamber through a first door, and a third chamber adjacent to and in fluid communication with the second chamber through a second door. The second chamber is fluidly sealed from the first chamber if the first door is in a closed position. The second chamber is configured to receive the at least one base via a first transfer mechanism if the fluid parameters of the first chamber are approximately equal to the fluid parameters of the second chamber. The second chamber includes a directed heat source and a build-up material configured to form a component on the at least one base by melting or sintering. The third chamber is fluidly sealed from the second chamber if the first door is in a closed position. The third chamber is configured to receive the at least one base, having a formed component disposed thereon, via a second transfer mechanism if the second door is in an open position. The fluid parameters of the second chamber are not substantially affected by fluid communication with the first chamber or the third chamber.
Abstract:
A method includes building a tubular object by a layer-by-layer additive manufacturing process. A structure integrally connected to the tubular object for supporting a portion of the tubular object is formed during building of the tubular object. The structure provides vibration dampening, heat shielding, heat transfer, stiffening, energy absorption, or mounting after the tubular object is built.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A duct includes an upstream segment and a downstream segment mounted to the upstream segment. A heat shield extends from one of the upstream and downstream segments. A sealing land extends from the other of the upstream and downstream segments, and is configured to engage with the heat shield. The heat shield protects the interface between the upstream and downstream segments of the ducts.
Abstract:
A method of monitoring the residual stress in surface and near surface regions of a component includes identifying predetermined locations on the surface of a component that are expected to experience high stress during normal operating conditions of the component. Marker particles are introduced into the component during additive manufacture of the component at the predetermined locations. Then, the residual stress of the component is measured at a location corresponding with the marker material using x-ray techniques.
Abstract:
A method of forming a reinforced polymeric component includes securing a plurality of pins within a mold and wrap ping reinforcing fibers around the pins to form a web of reinforcing fibers. The web of reinforcing fibers has a plurality of layers. The method of forming a reinforced polymeric component further includes adding a polymer to the mold and processing the polymer to form a molded polymeric component that contains the pins and the web of reinforcing fibers. A reinforced polymeric component includes a web of reinforcing fibers wrapped around a plurality of pins. The web of reinforcing fibers includes a plurality of layers. The reinforced polymeric component further includes a molded and processed polymer containing the web of reinforcing fibers and pins.
Abstract:
A system for dispersing a catalyst in a fuel includes a first reservoir containing the fuel, and a second reservoir including an agitator and containing a quantity of the catalyst suspended in the fuel. The system also includes a first conduit extending from the first reservoir, a second conduit extending from the second reservoir, and a mixing nozzle connected to the first conduit and the second conduit. The mixing nozzle includes a first meter positioned within the first conduit, a second meter positioned within the second conduit, a valve positioned upstream from the second meter within the second conduit, a junction in flow communication with the first conduit and the second conduit, a mixer downstream from the junction, a sensor positioned between the mixer and an outlet; and a controller connected to the valve and the first and second meters, the controller receiving feedback from the sensor.
Abstract:
A component includes an additively manufactured component with an internal passage; and an additively manufactured elongated member within the internal passage. A method of additively manufacturing a component including additively manufacturing a component with an internal passage; and additively manufacturing an elongated member within the internal passage concurrent with additively manufacturing the component.