Abstract:
A position sensor for the inductive detection of a position of a first component comprising a reference coil with respect to a second component comprising a reference body. A control and processing unit of the position sensor is coupled to the reference coil and is designed for issuing an output signal generating a current impulse in the reference coil. In addition, the control and processing unit is designed for evaluation of an oscillation generated by the current impulse in the reference coil as an input signal indicating the position of the reference body.
Abstract:
A capacitive rotary encoder has a stator and a rotor as well as stator electrodes firmly arranged at the stator on an encoding path coaxial to the rotor axis, and coupling electrodes arranged at the rotor. The coupling electrodes are guided over the stator electrodes at a small axial distance from the encoding path by rotation of the rotor, wherein they each cover stator electrodes adjacent in the peripheral direction and connect the latter capacitively to each other. Interrogation electronics detects for each of the stator electrodes a capacitive coupling with an adjacent stator electrode caused by a coupling electrode of the rotor. This permits the reliable detection of the angular position of the rotor both statically and dynamically.
Abstract:
An optical sensor has an optical plate which is adapted to make surface contact on a pane, in particular a windshield of a motor vehicle. It further has one or preferably a plurality of photoreceivers arranged on the side of the optical plate facing away from the pane. An optical mask is arranged in the optical path upstream of each photoreceiver, the optical mask having light-blocking and light-transmissive surface areas. The light-transmissive surface areas each allow an optical path to traverse the optical plate, impinging on the photoreceiver and is delimited by the light-blocking surface areas.
Abstract:
An optical display and control element comprises an at least partially transparent display screen, at least one light source for illuminating a rear side of the display screen, and at least one light sensor for detecting a temporal signal of the light scattered on the display screen. The light source is able to produce a time-variable light pattern while illuminating the rear side of the display screen. A control and processing unit is able to evaluate the temporal signal, detected by the light sensor, in combination with the time-variable light pattern and to determine a position of at least one object located on the display screen from this evaluation. The invention further relates to a method of optically determining the position of an object which is located on an at least partially transparent display screen of an optical display and control element.
Abstract:
An optical sensor device that can be used as a rain sensor has a light emitter, a light receiver, and an optical plate with rotationally symmetrically shaped Fresnel prism structures, which is coupled to a pane, in particular a windshield of a vehicle, by means of a coupling layer. On its opposite side, the optical plate takes up light from the light emitter. The light is coupled into the pane and, after a total reflection on an internal surface of the pane, is directed onto the light receiver.
Abstract:
An optical sensor device for detecting ambient light is adapted to be coupled to a pane (10), in particular to a windshield of a motor vehicle. The optical sensor device has a sensor unit which includes at least one light receiver (26) and a lens plate (12). By means of the sensor unit, an ambient light beam having entered the pane (10) is coupled out of the pane (10) and directed onto the light receiver (26). On a surface (12b) which faces the pane (10), the lens plate (12) includes a first Fresnel prism structure (22) having a plurality of individual structures (24). The individual structures (24) of the first Fresnel prism structure (22) are designed such that they deflect the light beam at different angles.
Abstract:
An optical sensor device that can be used as a rain sensor has a light emitter, a light receiver, and an optical plate with rotationally symmetrically shaped Fresnel prism structures, which is coupled to a pane, in particular a windshield of a vehicle, by means of a coupling layer. On its opposite side, the optical plate takes up light from the light emitter. The light is coupled into the pane and, after a total reflection on an internal surface of the pane, is directed onto the light receiver.
Abstract:
The method operates with successive, continuously repeated measuring cycles. In a first cycle section, a measuring capacitor is charged up to a first threshold value by the current flowing in a light receiver of a first optical measuring section. In a subsequent, second cycle section the measuring capacitor is discharged to a second threshold value by the current flowing in a light receiver of a second optical measuring section. The light transmitters of the optical measuring sections are regulated over several measuring cycles to predetermined rated values for the charging time and the discharging time. A wetting of the pane is concluded from the momentary deviations between the rated values and the actually measured values of the charging times and discharging times. The available modulation range is adapted dynamically to the prevailing conditions by the systematic control of the intensity of the light transmitters in the two optical measuring sections. In addition, the upper limit of the modulation range is extended to higher values of the ambient light.
Abstract:
A symbol display element for a vehicle interior is proposed, which comprises a front cover formed by a diffusing lens. A shadow mask is arranged in the optical path between the diffusing lens and a plurality of point light sources which can be activated separately, and includes for each point light source an associated symbol which is projected in an enlarged manner onto the rear side of the diffusing lens upon activation of the corresponding point light source. With this easily realizable configuration of the display element, the different symbols share a common display surface on the diffusing lens which acts as a rear projection screen.
Abstract:
In a method of determining a position of a touch on a capacitive sensor field having a grid of a plurality of discrete electrodes (12), contacted electrodes are determined by measuring a capacitance value for each of the electrodes and by checking for each of the electrodes for the measured capacitance value whether this value is above a predefined threshold value. A rough touch position (Bg) is calculated by weighting the electrode position with the measured capacitance value. A touch diameter (14) is calculated from the measured capacitance values, and a final touch position (Be) is calculated from the rough touch position (Bg) and the calculated touch diameter (14) using a value table in which correction values that were determined empirically or by means of simulation are stored for possible rough touch positions (Bg) and given touch diameters (14).