Abstract:
An example method includes generating an acoustic ultrasound wave that is focused at a focal point. The method further includes sequentially directing the focal point upon distinct portions of an object to form respective shock waves at the distinct portions of the object. The method further includes, via the respective shock waves, causing the distinct portions of the object to boil and form respective vapor cavities. The method further includes causing substantially uniform ablation of a region of the object that comprises the distinct portions. The substantially uniform ablation is caused via interaction of the respective shock waves with the respective vapor cavities. An example ablation system and an example non-transitory computer-readable medium, both related to the example method, are also disclosed.
Abstract:
Embodiments of the invention include improved radiofrequency (RF) pulse amplifier systems that incorporate an energy array comprising multiple capacitors connected in parallel. The energy array extends the maximum length of pulses and the maximum achievable peak power output of the amplifier when compared to similar systems. Embodiments also include systems comprising the amplifier configured to drive a load, wherein the load may include one or more ultrasound (e.g., piezoelectric) transducers Related methods of using the amplifier are also provided.
Abstract:
The present technology relates generally to receiving arrays to measure a characteristic of an acoustic beam and associated systems and methods. The receiving arrays can include elongated elements having at least one dimension, such as a length, that is larger than a width of an emitted acoustic beam and another dimension, such as a width, that is smaller than half of a characteristic wavelength of an ultrasound wave. The elongated elements can be configured to capture waveform measurements of the beam based on a characteristic of the emitted acoustic beam as the acoustic beam crosses a plane of the array, such as a transverse plane. The methods include measuring at least one characteristic of an ultrasound source using an array-based acoustic holography system and defining a measured hologram at the array surface based, at least in part, on the waveform measurements. The measured hologram can be processed to reconstruct a characteristic of the ultrasound source. The ultrasound source can be calibrated and/or re-calibrated based on the characteristic.
Abstract:
Methods and systems for creating patterns in tissue growth for tissue engineering are disclosed. In one embodiment, a method for arranging biological cells along predetermined patterns using an ultrasound includes: emitting the ultrasound by an ultrasound transducer; transmitting the ultrasound through a holographic lens toward a plurality of cells; and generating a pressure field in the predetermined patterns. The predetermined pattern includes a plurality of mutually parallel transverse planes. The parallel transverse planes are configured to entrap groups of cells of the plurality of cells. The axial pressure gradients within the parallel transverse planes are smaller than a first predetermined threshold. The lateral pressure gradients within the parallel transverse planes are larger than a second predetermined threshold. In response to generating the pressure field, the groups of entrapped cells are aligned within parallel transverse planes.
Abstract:
High intensity focused ultrasound systems for treating tissue are disclosed herein. A system of treating tissue in a patient in accordance with an embodiment of the present technology can include, for example, an ultrasound source having a focal region and configured to deliver high intensity focused ultrasound energy to a target site in tissue of the patient. The system can further include a controller operably coupled to the ultrasound source. The controller comprises a pulsing protocol for delivering the high intensity focused ultrasound energy with the ultrasound source to the target site. The controller is configured to cause the ultrasound source to pulse high intensity focused ultrasound waves to lyse cells in a volume of the tissue of the subject while preserving an extracellular matrix in the volume of the tissue exposed to the high intensity focused ultrasound waves.
Abstract:
A method includes transmitting a focused ultrasound wave into a medium to form (i) an ultrasound intensity well within the medium that exhibits a first range of acoustic pressure and (ii) a surrounding region of the medium that surrounds the ultrasound intensity well and exhibits a second range of acoustic pressure that exceeds the first range of acoustic pressure. The method further includes confining an object within the ultrasound intensity well. Additionally, an acoustic lens is configured to be acoustically coupled to an acoustic transducer. The acoustic lens has a varying longitudinal thickness that increases proportionally with respect to increasing azimuth angle of the acoustic lens. Another acoustic lens is configured to be acoustically coupled to an acoustic transducer. The acoustic lens includes a plurality of segments. Each of the plurality of segments has a varying longitudinal thickness that increases proportionally with respect to increasing azimuth angle of the segment.
Abstract:
Disclosed herein are ultrasound systems comprising a plurality of transducers configured to work in concert to produce a customizable beam profile through the additive effects of multiple pulses. As an example, uniform and wide beam profiles can be generated using transducer elements that cannot independently generate such beam profiles. Related methods, systems, and computer-readable media are all disclosed.
Abstract:
High intensity focused ultrasound systems for treating tissue are disclosed herein. A system of treating tissue in a patient in accordance with an embodiment of the present technology can include, for example, an ultrasound source having a focal region and configured to deliver high intensity focused ultrasound energy to a target site in tissue of the patient. The system can further include a controller operably coupled to the ultrasound source. The controller comprises a pulsing protocol for delivering the high intensity focused ultrasound energy with the ultrasound source to the target site. The controller is configured to cause the ultrasound source to pulse high intensity focused ultrasound waves to lyse cells in a volume of the tissue of the subject while preserving an extracellular matrix in the volume of the tissue exposed to the high intensity focused ultrasound waves.
Abstract:
Methods and systems for selectively disrupting tissue using high intensity focused ultrasound (“HIFU”) therapy are disclosed herein. A method of treating tissue in accordance with an embodiment of the present technology can include, for example, pulsing HIFU waves from an ultrasound source toward a volume of tissue that includes an extracellular matrix (“ECM”) and generating, from nonlinear propagation of the HIFU waves, shock waves in the tissue to induce boiling in the volume of the tissue. The method can further include lysing cells in the volume of tissue while leaving the ECM at least substantially intact. The emulsification of cells can be to a sufficient degree to decellularize the tissue and form a decellularized scaffold for subsequent tissue growth.
Abstract:
A method for attempting to fragment or comminute an object in a body using ultrasound includes producing a burst wave lithotripsy (BWL) waveform by a therapy transducer. The BWL waveform is configured to fragment or comminute the object. The BWL waveform includes a first burst of continuous ultrasound cycles and a second burst of continuous ultrasound cycles. A burst frequency corresponds to a frequency of repeating the bursts of the BWL waveform. The method also includes determining a cycle frequency f of the continuous ultrasound cycles within the first burst and the second burst based on a target fragment size D, where the cycle frequency is: f(MHz)=0.47/D(mm).